

RAM-SE’07 – ECOOP’07 Workshop on
Reflection, AOP, and Meta-Data for Software Evolution
(Proceedings)

Berlin, 31st of July 2007

 Edited by

Walter Cazzola - Università degli Studi di Milano, Italy
Shigeru Chiba - Tokyo Institute of Technology, Japan
Yvonne Coady - University of Victoria, Canada
Stéphane Ducasse - University of Savoie, France
Günter Kniesel - University of Bonn, Germany
Manuel Oriol - ETH Zürich, Switzerland
Gunter Saake - Otto-von-Guericke-Universität Magdeburg, Germany

Preprint no. xx of University of Magdeburg.

– –

Foreword

Software evolution and adaptation is a research area, as the name states, in
continuous evolution, that offers stimulating challenges for both academic and
industrial researchers. The evolution of software systems, to face unexpected
situations or just for improving their features, relies on software engineering
techniques and methodologies. Nowadays a similar approach is not applicable
in all situations e.g., for evolving nonstopping systems or systems whose code is
not available.

Reflection and aspect-oriented programming are young disciplines that are
steadily attracting attention within the community of object-oriented researchers
and practitioners. The properties of transparency, separation of concerns, and ex-
tensibility supported by reflection and aspect-oriented programming have largely
been accepted as useful for software development and design. Reflective fea-
tures have been included in successful software development technologies such
as the Java language and the .NET framework. Reflection has proved to be
useful in some of the most challenging areas of software engineering, including
Component-Based Software Development (CBSD), as demonstrated by exten-
sive use of the reflective concept of introspection in the Enterprise JavaBeans
component technology.

Features of reflection such as transparency, separation of concerns, and exten-
sibility seem to be perfect tools to aid the dynamic evolution of running systems.
They provide the basic mechanisms for adapting (i.e., evolving) a system without
directly altering the existing system. Aspect-oriented programming can simplify
code instrumentation providing a few mechanisms, such as the join point model,
that allow for the exposure of some points (join points) in the code or in the
computation that can be modified by weaving new functionality (aspects) at
those points either at compile-time, load-time, or ruin-time. Meta-data repre-
sent the glue between the system to be adapted and how it has to be adapted;
the techniques that rely on meta-data can be used to inspect the system and
to dig out the necessary data for designing the heuristic that the reflective and
aspect-oriented mechanisms use for managing the evolution.

It is our belief that current trends in ongoing research in reflection, aspect-
oriented programming and software evolution clearly indicate that an inter-
disciplinary approach would be of utmost relevance for both. Therefore, we felt
the necessity of investigating the benefits that the use of these techniques on the
evolution of object-oriented software systems could bring. In particular we were
and we continue to be interested in determining how these techniques can be
integrated together with more traditional approaches to evolve a system and in
discovering the benefits we get from their use.

i

Software evolution may benefit from a cross-fertilization with reflection and
aspect-oriented programming in several ways. Reflective features such as trans-
parency, separation of concerns, and extensibility are likely to be of increasing
relevance in the modern software evolution scenario, where the trend is towards
systems that exhibit sophisticated functional and non-functional requirements.
For example, systems that are built from independently developed and evolved
COTS (commercial off-the-shelf) components; that support plug-and-play and
end-user directed reconfigurability; that make extensive use of networking and
internetworking; that can be automatically upgraded through the Internet; that
are open; and so on. Several of these issues bring forth the need for a system
to manage itself to some extent, to inspect components’ interfaces dynamically,
to augment its application-specific functionality with additional properties, and
so on. From a pragmatic point of view, several reflective and aspect-oriented
techniques and technologies lend themselves to be employed in addressing these
issues. On a more conceptual level, several key reflective and aspect-oriented
principles could play an interesting role as general software design and evolution
principles. Even more fundamentally, reflection and aspect-oriented program-
ming may provide a cleaner conceptual framework than that underlying the
rather ‘ad-hoc’ solutions embedded in most commercial platforms and technolo-
gies, including CBSD technologies, system management technologies, and so on.
The transparent nature of reflection makes it well suited to address problems
such as evolution of legacy systems, customizable software, product families,
and more. The scope of application of reflective and aspect-oriented concepts
in software evolution conceptually spans activities related to all the phases of
software life-cycle, from analysis and architectural design to development, reuse,
maintenance, and, therefore also evolution.

The overall goal of this workshop – as well as of its previous editions –
was that of supporting circulation of ideas between these disciplines. Several
interactions were expected to take place between reflection, aspect-oriented pro-
gramming and meta-data for the software evolution, some of which we cannot
even foresee. Both the application of reflective or aspect-oriented techniques and
concepts to software evolution are likely to support improvement and deeper un-
derstanding of these areas. This workshop has represented a good meeting-point
for people working in the software evolution area, and an occasion to present
reflective, aspect-oriented, and meta-data based solutions to evolutionary prob-
lems, and new ideas straddling these areas, to provide a discussion forum, and
to allow new collaboration projects to be established. The workshop is a full day
meeting. One part of the workshop will be devoted to presentation of papers,
and another to panels and to the exchange of ideas among participants.

In this forth edition of the workshop, we had an interesting keynote by
Shigeru Chiba that has investigated the real benefits provided by aspects to
evolve the software and which properties are desirable to support software evo-
lution. This keynote was particularly provocative and raised several issues and
lively discussion among the workshop attendees. To the interested reader an
extended abstract can be found in the first part of these proceedings.

ii

This volume gathers together all the position papers accepted for presentation
at the forth edition of the Workshop on Reflection, AOP and Meta-Data for
Software Evolution (RAM-SE’07), held in Berlin on the 31st of July, during the
ECOOP’07 conference. We received many interesting submissions and due to
time restrictions and to guarantee the event quality we had to select only a few
of them, the papers that, in our opinion, are more or less evidently interrelated
to fuel a more lively discussion during the workshop. Now, a few months after
the workshop, we can state that we achieved our goal. The presentations were
interesting and the subsequent panels stimulated a lively and rich set of ideas
and proposals. We are sure that in the next months we will see many papers by
the workshop attendees and the fruit of such lively discussions.

The success of the workshop is mainly due to the people that have attended
it and to their effort to participate to the discussions. The following is the list
of the attendees in alphabetical order.

Blair, Gordon Masuhara, Hidehiko Südholt, Mario
Cazzola, Walter Mens, Kim Sørensen, Fredrik
Chiba, Shigeru Mosser, Sebastian Saake, Gunter
Greenwood, Phil Oriol, Manuel Smaragdakis, Yannis
Hoffman, Kevin Piccioni, Marco Tanter, Éric
Huang, Shan Shan Pini, Sonia Tao, Yonglei
Irmert, Florian Pukall, Mario Ueyama, Jó
Kienle, Holger Rashid, Awais Yonezawa Akinori

A special thank is for Mario Südholt that has chaired the invited speaker and
fed the lively discussion that followed the talk and the whole bunch of people
that participated to and animated the panel at the end of the day.

We have also to thank the Department of Informatics and Communication
of the University of Milan, the Department of Mathematical and Computing
Sciences of the Tokyo institute of Technology and the Institute für Technische
und Betriebliche Informationssysteme, Otto-von-Guericke-Universität Magde-
burg for their various supports.

November 2007 W. Cazzola, S. Chiba, Y. Coady, S. Ducasse,
G. Kniesel, M. Oriol and G. Saake

RAM-SE’07 Organizers

iii

iv

Contents

Keynote on How We Should Use Aspects
How We Should Use Aspects. 3
Shigeru Chiba (Tokyo Institute of Technology, Japan).

Classic Software Evolution
Toward Computer-Aided Usability Evaluation Evolving Interactive Software. 9
Yonglei Tao (Grand Valley State University, USA).

Towards Runtime Adaptation in a SOA Environment. 17
Florian Irmert, Marcus Meyerhöfer and Markus Weiten
(Friedrich-Alexander University of Erlangen and Nuremberg, Germany).

IDE-integrated Support for Schema Evolution in Object-Oriented Applications. 27
Marco Piccioni, Manuel Oriol and Bertrand Meyer
(ETH Zürich, Switzerland).

Towards correct evolution of components using VPA-based aspects. 37
Dong Ha Nguyen and Mario Südholt
(École des Mines de Nantes, France).

Aspect-Oriented and Reflection for Software Evolution
Characteristics of Runtime Program Evolution. 51
Mario Pukall and Martin Kuhlemann
(Otto von Guericke University Magdeburg, Germany).

Aspect-Based Introspection and Change Analysis for Evolving Programs. 59
Kevin Hoffman, Murali Krishna Ramanathan, Patrick Eugster and Suresh Jagannathan
(Purdue University, USA).

Morphing Software for Easier Evolution. 71
Shan Shan Huang and Yannis Smaragdakis
(University of Oregon, USA),

AOP vs Software Evolution: a Score in Favor of the Blueprint. 81
Walter Cazzola (DICo, University of Milan, Italy), and
Sonia Pini (DISI, University of Genova, Italy).

v

vi

Aspects and Evolution: How to Use Aspects

Keynote speaker:
Shigeru Chiba, Tokyo Institute of Technology, Japan

Chairman: Mario Südholt, École des Mines de Nantes, France

How we should use aspects

Shigeru Chiba
Tokyo Institute of Technology

Abstract

Besides classic logging and the observer pattern, several applications
of aspect-oriented programming (AOP) have been proposed so far. This
talk reviewed those applications and discussed what properties of AOP are
significant and promising for software evolution. It also discussed what
are unique features of AOP against related technology such as reflection
and mixin layers.

1 Logging

Logging is a classic application of AOP (Aspect-Oriented Programming). It is
a simple but real application that we can see in several commercial products. I
heard that logging by AOP is used in WebSphere and MySQL. However, this
application example might have been giving some developers an impression that
AOP is a program transformation technique. For example, at the AOAsia 2007
workshop, a few researchers presented techniques for detecting some problems
in a given program, such as memory leaks, by analyzing a trace log, which is
generated by an AspectJ aspect [2]. Since this use of AspectJ is under the hood,
the users of such a detecting tool do not see or write an aspect at all; AspectJ
is totally a program transformation toolkit for inserting a logging code in the
program. It is used only by the tool implementer just because it provides an
easy-to-use programming front-end or a simple language for describing program
transformation.

Although AspectJ accidentally can be used as a program translator, it is
not the tool designed primarily for program transformation. Their capability
is limited and other tools such as Javassist [3] allow more complex transforma-
tion. Furthermore, AOP is never a technique for program transformation. As
we know well, it is a programming paradigm for human developers, who want
to describe a crosscutting concern. We should be careful when we discuss appli-
cations in which AOP is used only for an implementation-level concern and it is
never seen or written by the end users. In the case of the above detection tool
of memory leaks, we should understand that an AOP language simplified the
implementation of logging because the tool has only to generate an extra code
and it does not have to modify an existing code. Without AOP, the tool imple-
mentation would be more complicated but this fact is irrelevant to end-users’

3

concerns.

2 Code reuse/share

Another well-known application of AOP is code reusing and sharing. AOP
languages allow us to merge similar code fragments found in several different
classes and methods. These fragments can be replaced with a single advice body
if the join points of the fragments are enumerated in a pointcut definition. We
do not have to repeatedly describe similar code by hand at every join point.

To merge similar code fragments, an advice body must be described as gener-
ically as possible. We should notice that generic description has been enabled
by language mechanisms other than AOP’s ones. In AspectJ, genericness is
achieved by reflection such as thisJoinPoint. Although the proceed operator avail-
able in an around advice is a special form for AOP, it can be regarded as syntac-
tical support for reflection. Although AOP is a good mechanism for specifying
where a generically described code fragment (i.e., an advice body) is instanti-
ated, it is never a mechanism for enabling generic description itself. In fact, some
researchers have proposed to introduce an advice body parametrized by meta
variables [7]. For better genericness, we have to combine such parametrization
and reflection with an AOP mechanism like pointcut-advice. Thus, exploring
code reusing/sharing by AOP too much might mislead us into a study of non-
AOP mechanisms.

3 Composability

Implementing a functional concern as a pluggable module is also an application
of AOP. For example, the observer pattern described in AspectJ [5] is such a
concern. Santos et al. reported that an aspect is useful for implementing a new
functional feature of the JHotDraw drawing editor [9]. Because of its (syntactic-
level) obliviousness property [4], a module written in an AOP language can be
connected and disconnected to other modules without modifying the source
code.

This type of applications should be more explored because it is strongly re-
lated to the essence of AOP. An initial challenge of AOP was to enable software
to be composed of several modules independent of each other. Here, the in-
dependence means that the code of each module is clearly separated from the
others and thus the module can be connected and disconnected to/from others
without source-code changes. Since some modules are inherently crosscutting,
enabling this independence is not straightforward. As Kiczales suggested in his
keynote talk at AOAsia 2006 [6], it is a wrong assumption that a program can
be divided into statically localized units with a well-defined static interface. For
software evolution, or even for maintenance, we often have to change (or refac-
tor) the “interfaces” of modules. We must sometime add new extension points
to the interfaces or make callback methods available. We may have to expose

4

some internal data structures that have been hidden behind the interfaces so
that those data structures can be used for debugging, performance tuning, or
implementing a new functional feature. These changes of the interfaces involve
source-code modification.

AOP languages should support this changeability of interfaces in a flexible
but controlled manner. This is still an open problem today. Although one
idea is statically declaring possible changes as open modules [1, 8] enables, it
damages the flexibility; at design time, we must expect all changes needed for
future evolution. On the other hand, keeping the maximum flexibility will break
interfaces, which are inherently static contracts. An interface that we can change
at any time at any degree is never the same concept that we know today as an
interface.

4 Summary

A number of applications of AOP have been proposed so far. In this talk, I
picked three kinds of applications: logging, code reusing/sharing, and compos-
ability. Although they are interesting applications, logging might have been
giving a wrong impression, which is that AOP is program transformation. Code
reusing/sharing might have been confusing developers; genericness is not an in-
herent essence of AOP. I pointed out that exploring composability applications
could help us reveal an essence of AOP. AOP languages should enable a mod-
ule “interface” to be altered without source-code changes for future software
evolution. I mentioned that this ability of AOP is essential at least from the
viewpoint of software evolution.

References

[1] Aldrich, J., “Open Modules: Modular Reasoning About Advice,” in ECOOP
2005, LNCS 3586, pp. 144–168, Springer-Verlag, 2005.

[2] Chen, K. and J. Chen, “Aspect-Based Instrumentation for Locating Memory
Leaks in Java Programs,” the AOAsia 3 workshop, Beijing, July 23, 2007.

[3] Chiba, S., “Load-time structural reflection in Java,” in ECOOP 2000, LNCS
1850, pp. 313–336, Springer-Verlag, 2000.

[4] Filman, R. E. and D. P. Friedman, “Aspect-Oriented Programming is
Quantification and Obliviousness,” Aspect-Oriented Software Development,
Addison-Wesley, pp. 21–35, 2005.

[5] Kiczales, G., E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “An Overview of AspectJ,” in ECOOP 2001 – Object-Oriented
Programming, LNCS 2072, pp. 327–353, Springer, 2001.

[6] Kiczales, G., “A Call to Arms: What should Modularity Mean?,” keynote
speach, AOAsia 2006 workshop, Tokyo, September19, 2006.

5

[7] Kniesel, G., T. Rho, and S. Hanenberg, “Evolvable Pattern Implementations
Need Generic Aspects,” ECOOP 2004 Workshop on Reflection, AOP and
Meta-Data for Software Evolution, Oslo, 2004.

[8] Ongkingco, N., P. Avgustinov, J. Tibble, L. Hendren, O. de Moor, and
G. Sittampalam, “Adding open modules to AspectJ,” in Int’l Conf. on As-
pect Oriented Software Development (AOSD’06), pp. 39–50, ACM Press,
2006.

[9] Santos, A. L., A. Lopes, and K. Koskimies, “Framework specialization as-
pects,” in AOSD ’07: Proceedings of the 6th international conference on
Aspect-oriented software development, pp. 14–24, ACM Press, 2007.

6

Classic Software Evolution
Chairman: Walter Cazzola, Università di Milano, Italy

Toward Computer-Aided Usability Evaluation
for Evolving Interactive Software

Yonglei Tao

School of Computing and Information Systems
Grand Valley State University

Allendale, Michigan, US

Abstract. Recurrent redesign on an application’s user interface is driven by
changing requirements, user profiles and experiences, as well as technologies.
User interface evolution also has impact to the application itself, which imposes
a great challenge on providing tool support to ensure a smooth transformation in
this process. We in this paper explore the suitability of using an aspect-oriented
approach to computer-aided usability evaluation. Using aspects, a support tool
is not only flexible for collecting data to address diverse usability considerations
in the evolutionary process but also adaptable to continuous changes in the
application. We also discuss our future research on other relevant issues about
such a tool.

Keywords: Interactive Software Design, Usability Evaluation, Tool Support,
Aspect-Oriented Programming.

1 Introduction

Interactive software evolves along one or more dimensions during its lifetime,
including functionality, architecture, code, and user interface. Changes in one
dimension often affect, interact, and impact others [1]. As such, the evolution of an
interactive application imposes a great challenge not only on developing the
application itself but also on providing tool support to ensure a smooth transformation
in this process [2].

Usability is a key quality attribute for the success of interactive applications. A
practical solution to building a usable product is early and ongoing usability
evaluation [3]. In usability evaluation, users use an application to complete a pre-
determined set of tasks. Information on user behavior with respect to the user
interface is captured and analyzed to determine how well the user interface supports
users’ task completion. Since evaluation activities such as data collection and analysis
are very time-consuming, tool support is indispensable [5, 6].

Recurrent redesign on an application’s user interface is driven by changing
requirements, user profiles and experiences, as well as technologies. Usability
considerations vary in the process of user interface evolution [4]. As a new feature is
introduced, for example, the attention is focused on the flow of the basic user-system

9

interaction, including the coordination of data exchange between the user and the
system as well as the navigational structure. While a new interaction style is made
available to support a particular user group for effective use of the application,
however, usability considerations largely reflect on physical, spatial, and visual
characteristics of screen elements. A support tool must be flexible for collecting data
at a level of abstraction that is appropriate to address specific needs in different stages
of the evolutionary process.

As the user interface evolves, new windows may be introduced; existing windows
may be combined, split, or removed; and screen elements may be added, removed, or
replaced. Changes in the user interface inevitably affect various components in the
application [7]. In Java, for examples, even re-layout of screen elements requires to
alter a few lines of code. Hence, a support tool must also be adaptable to continuous
changes in the application.

In this paper, we explore the suitability of using an aspect-oriented approach to
computer-aided usability evaluation. We describe how to use aspects to capture user
interface events that occur when the user interacts with an application’s user interface.
Using aspects for data collection paves the way for analyzing the acquired data and
identifying potential usability problems. We also discuss our future research on other
relevant issues about such a tool.

2 Related Work

AOP (Aspect-Oriented Programming) is known as an effective way of modularizing
crosscutting concerns such as monitoring, tracing, and logging [8, 10]. As far as we
know, using an aspect-oriented approach to computer-aided usability evaluation,
however, does not seem to have received as much attention as it should have been, in
part due to the gap between the communities of SE (Software Engineering) and HCI
(Human-Computer Interaction).

Proposals about automatic techniques for capturing user interface events can be
found in the literature [5]. Some of those techniques capture events at the keystroke or
system level regardless of the usability issues under consideration. Recording data at
that level produces voluminous log files and makes it difficult to map recorded usage
into high-level tasks [6]. Usability-related information can also be obtained by
instrumenting the target program or its platform. Because such information does not
appear at one particular place, instrumentation in a traditional way tends to be
distributed throughout the target code [9]. Obviously, techniques as such are
inappropriate when changes in an application occur quite often. Adaptive techniques,
such as AOP, are more promising for our purposes [10, 11].

Java-style interfaces enhance, facilitate, and even make possible the flexibility,
modifiability, and extensibility that are highly desirable in object-oriented design [12].
Interfaces can also improve the quality of aspect-oriented design [13]. We use
interfaces to expose crosscutting behavior against which aspects are defined. Using

10

interfaces and aspects jointly provides the benefit of adaptability for automatic
support for usability evaluation.

3 The MVC Architecture for Interactive Applications

The Model-View-Controller architecture (MVC) was originally designed for
applications that provide multiple views for the same data [15]. It has gradually
become the central feature of modern interactive applications. Based on the object-
oriented principles, MVC describes an application in terms of three fundamental
abstractions: models, views, and controllers. Roughly, the model manages application
data, the view is responsible for visual presentation, and the controller handles input
events for views. By encapsulating the three abstractions into separate components,
MVC minimizes the impact of user interface changes and increases the reusability of
domain objects.

User interface events are generated as natural products of the normal operation of
an interactive application, including input events (such as the user clicking on a
command button) and output events (such as the application bringing up a message
box). Sequences of events result from steps taken by the user in completing tasks. In
MVC, the view and controller take appropriate actions when they are notified of
corresponding events. Separating the three abstractions also exposes user interface
events within the application.

We in this paper use a GUI (Graphical User Interface) application
AccountManager, adopted from [14] with modifications, as an example. Briefly, the
application is a Java program intended to manage several bank accounts for a
customer. A text view and a bar graph view are provided for each account to display
the account information. A pie chart view is provided to display the customer’s total
assets held in all the accounts. Also a text field and two buttons are provided for each
account, where the former allows the user to enter an amount and the latter to
withdraw and deposit the input amount, respectively.

3.1 Model and View

Figure 1 is a UML class diagram that illustrates key classes in the model and view of
the application’s MVC architecture. As shown in Figure 1, class Account is a model
and classes PieChartView, TextView, and BarGraphView represent three views for an
Account.

When an account changes state, all of its views are notified and updated to reflect
the change. A well-known design pattern, Observer, describes an effective way to
establish such a one-to-many dependency [16]. We use Java’s Observable class and
Observer interface to implement the Observer pattern. As shown in Figure 1, class
Account extends class Observable and the three view classes (i.e., PieChartView,
TextView, and BarGraphView) implement interface Observer.

11

Note that each view defines its own update() method to refresh its display and the
account notifies its views by invoking their update() methods. As a result, a call to the
update() method for an object of any class in the Observer-based class hierarchy
indicates the occurrence of an output event.

Fig. 1. Model and View

3.2 Model and Controller

Due to limited space, we omit the UML class diagram for the model and controller. In
Java, a listener class is responsible for handling an input event. Application
AccountManager defines two listener classes, one for executing a transaction for an
account when a button is clicked and the other for validating the user input entered in
a text field. Both listener classes handle the same type of input events, that is, action
events in Java. Action events originate from the user’s actions with respect to screen
elements such as buttons, menu items, and text fields. Java provides an ActionListener
interface with method actionPerformed() for handling action events. Hence, the two
listener classes must implement the ActionListener interface.

12

Note that each listener class has to define its own actionPerformed() method for
handling an action event. Application AccountManager notifies a listener of the user’s
action by invoking its actionPerformed() method. As a result, a call to the
actionPerformed() method for an object of any class that implements the
ActionListener interface indicates the occurrence of an input event in this application.

4 Data Collection with Aspects

AspectJ is an extension to the Java programming language [10]. It provides constructs
to modularize crosscutting concerns that would otherwise result in code scattered over
multiple modules. We use the aspect construct to capture user interface events.

Java-style interfaces are essential to adaptability. An interface is a collection of
method signatures. It defines a standard protocol to interact with an object without
knowing or caring about what class that object belongs to. In application
AccountManager, interface Observer specifies a standard way for a model to notify its
views and interface ActionListener for the application to notify an event listener. We
expose crosscutting concerns of interest through interfaces against which aspects are
defined. Using interfaces allows us to specify crosscutting behavior without being
committed to a particular class hierarchy. As a result, the dependency of the aspects
code on specific features of the user interface is loosened.

4.1 Capturing Output Events

In application AccountManager, each view is updated when being notified of state
change in its model. Such a notification is made through a call to the update() method
for each view. Aspect UpdateView, as declared below, is intended to capture output
events that occur when views are notified.

import java.awt.*;

import java.util.*;

public aspect UpdateView {

// Pointcut Declaration

pointcut traceUpdate (Object obj)

: cflow (execution (

 void Observer+.update (

 Observable, Object)))

 && args (Observable, obj);

13

// Advice Definition

after(Object obj): traceUpdate(obj) {

 System.out.println (obj +

" view updated");

}

}

Aspect UpdateView defines a pointcut traceUpdate() to capture joint points that
make a call to the update() method for a view. It also defines a piece of advice to
identify the account whose state change causes the output event. Here, pointcupt
traceUpdate() takes an event argument from the advised joint point and passes it to the
advice, which gives the advice the information it needs.

In the declaration of pointcut traceUpdate(), Observer+ means any class that
implements the Observer interface, including both the current and potential ones. As
such, the introduction of a new view or removal of an existing view has little impact
to aspect UpdateView.

4.2 Capturing Input Events

When the user clicks a button or enters data in a text field, a listener is notified of the
action event. We define an aspect to capture action events. Basically, this aspect
contains a pointcut to capture joint points that make a call to method
actionPerformed() for a listener. It also contains a piece of advice that receives an
event object from the advised joint point and uses it to identify the event source.

We can use such an aspect to capture action events without having to worry about
from which screen elements they originate or by which handlers they are handled.
Changes in the user interface with respect to the originating screen elements of the
action event, such as adding or removing a button, will affect the related handler
classes. But they won’t have much impact to that aspect and it will continue to
function as it is specified.

Note that other types of input events also occur when the user interacts with the
application’s user interface, such as mouse and key events. Java provides a listener
interface for each type of input event. Similarly, handler classes and aspects can be
specifically defined to capture other types of input events. Such an addition does not
affect the existing ones in any way. While action events contribute to usability
information at the application level, mouse and key events contribute primarily to
usability information at a lower level of abstraction. Use of those aspects selectively
would allow us to address different usability considerations.

When application AccountManager runs with the aspects described above, a list

of input and output events will display on the screen, showing which button is clicked,
which view is updated, and so forth. Such a list of events provides the basis for the
follow-up activities in usability evaluation.

14

5 Summary and Future Research

As demonstrated by the above example, the aspect-oriented approach is suitable for
building a support tool for usability evaluation. Using aspects not only provides the
advantage of flexibility but also offers the benefit of adaptability. In addition, using
aspects makes possible not only to collect usability-related information from the
captured events but also to obtain relevant information available elsewhere in the
application, which is helpful for a meaningful interpretation of certain data. Compared
with some of the existing techniques that require an additional step to extract
appropriate information from the raw data, the aspect-oriented approach is more
effective.

It is worth noting that although we use Java in the example application, our
approach, which is based on the notions of MVC, interfaces/abstract classes, and
aspects, is language independent.

In addition to data collection, it is equally important to provide tool support for
data analysis. Analyzing the acquired data manually would be difficult and tedious
without tool support. In addition to data collection, relevant issues as listed below
require further research:

(1) Identifying tasks and sequences of tasks that the user is intended to

accomplish from the acquired data. User interface design is centered on tasks (or
use cases) [3]. As a consequence, tasks are a natural unit of data for analysis
purposes. Well-defined tasks in the requirements specification provide a basis for
identifying tasks. Here, it is important to separate application-specific knowledge
from general processing logic for the sake of adaptability.

(2) Analyzing data obtained from multiple users to measure usability attributes
of a user interface and to identify potential issues affecting them. Examples of
quantitative measures include time to complete a task, task frequencies, range of
functions used, and number of errors or repeated errors. More importantly,
analyzing the acquired data enables us to find indicators for potential usability
problems, for example, areas in which mistakes were made, unnecessary or
undesirable steps were taken, and extra assistances (such as undo and on-line
help) were requested. Failure for a (group of) user to follow a navigational path
as expected may indicate the lack of adequate visual clues for what the user needs
to know. Often, whether or not visual guidance is adequate depends on the user
who uses the application. Here, a challenge is to find out to which user group it is
adequate and to which one it is not. We will investigate use of data mining
techniques in this regard.

In addition, AspectJ is classified as a static AOP system. Static AOP systems

allow weaving in aspects at compile or load-time. On the other hand, the dynamic
AOP systems allow weaving aspects in at run-time. As a result, programmers can
dynamically plug and unplug an aspect in/from running software [17]. Obviously, a
dynamic AOP system seems to be more appropriate for our purposes. It is also an
interesting issue that deserves future attention.

15

References

[1] Lehman, M., Ramil, J.: Evolution in Software and Related Areas. Proceedings of the
International Workshop on Principles of Software Evolution (IWPSE 2001), Vienna,
Austria.

[2] Gall, H., Lanza, M.: Software Evolution: Analysis and Visualization. Proceedings of the
International Conference on Software Engineering (ICSE 2006), Shanghai, China.

[3] Torres, R.: Practitioner’s Handbook for User Interface Design and Development. Prentice-
Hall (2002).

[4] Ferre, X., et al.: Usability Basics for Software Developers. IEEE Software,
January/February (2001) 22-29.

[5] Ivory, M., Hearst, M.: The State of the Art in Automating Usability Evaluation of User
Interfaces. Computing Survey, Vol. 33, No. 4, ACM (2001) 470-516.

[6] Hilbert, D., Redmiles, D.: Extracting Usability Information from User Interface Events.
Computing Surveys, Vol. 32, No. 4, ACM (2000) 384-421.

[7] Costabile, M., et al.: Supporting Interaction and Co-evolution of Users and Systems.
Proceedings of the International Conference on Advanced Visual Interfaces (AVI 2006),
Venezia, Italy.

[8] Low, T.: Designing, Modeling and Implementing a Toolkit for Aspect-oriented Tracing
(TAST). Proceedings of the Workshop on Aspect-Oriented Modeling with UML (AOSD
2002), Univ. of Twente, The Netherlands.

[9] Deters, M., Cytron, R.: Introduction to Program Instrumentation using Aspects. Proceedings
of the ACM OOPSLA Workshop on Advanced Separation of Concerns in Object-Oriented
Systems (OOPSLA 2001), Tampa Bay, Florida, USA.

[10] Laddad, R.: AspectJ in Action: Practical Aspect-Oriented Programming. Manning
Publications Co. (2003).

[11] Tao, Y.: Capturing User Interface Events with Aspects. Proceedings of the 12th
International Conference on Human-Computer Interaction, LNCS 4553, Springer-Verlag
Berlin Heidelberg (2007) 1171-1180.

[12] Coad, P., Mayfield, M.: Java Design: Building Better Apps & Applets. Prentice Hall
(1999) 223-288.

[13] Griswold, W., et al.: Modular Software Design with Crosscutting Interfaces. IEEE
Software, January/February, IEEE (2006) 51 – 60.

[14] Deitel, H., et al.: Advanced Java 2 Platform: How to Program. Prentice-Hall (2002) 85-
134.

[15] Krasner, G., Pope, S.: A Cookbook for Using the Model-View-Controller User Interface
Paradigm in Smalltalk-80. JOOP (1988), Aug. / Sept.

[16] Gamma, E., et al.: Design Patterns: elements of Reusable Software Architecture. Addison-
Wesley (1995).

[17] Sato, Y., et. al.: A Selective, Just-In-Time Aspect Weaver. Proceedings of the 2nd
International Conference on Generative Programming and Component Engineering
(GPCE), LNCS 2830, Springer-Verlag (2003).

16

Towards Runtime Adaptation in a SOA
Environment

Florian Irmert, Marcus Meyerhöfer, Markus Weiten

Friedrich-Alexander University of Erlangen and Nuremberg
{Florian.Irmert,Marcus.Meyerhoefer}@cs.fau.de,markus@weiten.de

Abstract. Service Oriented Architecture (SOA) promotes the utiliza-
tion of available services to develop completely new applications in a
context which has not been foreseen as these services were implemented.
Unfortunately the interfaces respectively the behaviour of a service often
do not fit exactly to the new domain. Slight changes would be necessary
to reuse them in the new environment. This paper presents an approach
to integrate dynamic AOP into a SOA platform to adapt existing services
at runtime to new requirements. Services can then be reused without the
need of stopping and redeployment.

1 Introduction

Service Oriented Architecture (SOA) has recently gained widespread attraction
because of its promise to allow for easier and more flexible adaptations of the
software infrastructure of a company to fast changing business requirements. The
core idea of SOA is to decouple functional units and expose them as independent
services to other programs and thereby foster reuse. Moreover, this allows to
create new applications or services by merely combining already available ones
in new ways.

However, in a business environment there are of course some services which
have been build specifically for concrete applications (e.g. client management).
Such services are usually designed without reuse in mind but are determinated
by the requirements of the service users; often service user and service provider
design the services in a collaborative process. In order to be usable by new ser-
vices or applications, those company internal services would have to be adapted.
In modern environments with high demands on application availability this leads
to the necessity to modify running services. It is not viable to take a service of-
fline and deploy an updated version as possibly many other services depend on
such a service. Furthermore, it might also happen that different services have
different or even conflicting requirements on a service they use. In such cases
specific modifications should be applied for each consumer individually.

In this paper we present an approach to adapt services at runtime. We ex-
amine this problem from a technical point of view1. Runtime adaptation [1,2,3]
1 Semantical issues—e.g. which modifications should be disallowed in order to ensure

correct application behaviour—are beyond the scope of this paper and area of future
work.

17

can be achieved with dynamic Aspect Oriented Programming (d-AOP) [4] and
therefore we have integrated a d-AOP framework into a praxis proven SOA
environment, the OSGi Service Platform.

2 Technical Background

In the next Section we give a short introduction to the OSGi Service Platform
and d-AOP.

OSGi Service Platform The OSGI Service Platform is described as a ”Java
based application server for networked devices, however small or large they are”
[5]. Originally designed for embedded devices and home service gateways, it has
become prominent for building SOA applications. Several applications (deployed
in a special bundle format) can coexist inside the OSGi Service Platform, while
each is loaded by a different class loader. Consequently only one Java Virtual
Machine is needed. Also lifecycle management is supported for all hosted ap-
plications; there is an API to install, start, stop and de-install the application
bundles without restarting the framework. This ”Hot-Deployment” feature is
very interesting in the context of SOA, because adding new services to the plat-
form does not affect running services. Bundles can provide their functionality
as a service by publishing their interfaces in the OSGi Service Registry. Other
bundles employ this registry to discover and bind services (fig. 1). While there
are a number of implementations of the OSGi Specification [6,7] we decided to
use Equinox [8], published by the Eclipse Foundation, because it is a well proven
implementation which offers all necessary features for our approach (Section 4).

BundleBundle

OSGi Service Registry

Service Provider Service Requester3. bind

1. publish 2. discover

Fig. 1. OSGi Service Registry

Dynamic AOP The term ”dynamic aspect-oriented programming” is most
commonly used if aspects can be deployed and activated at runtime. Dynamic
AOP can be realized e.g. with a modified JVM [9] or bytecode modification [10].
We decided to use JBoss AOP in our approach, because its successful application
is exemplified by its usage in the JBoss Application Server. JBoss AOP inserts

18

hooks at potential joinpoints. Each time such a hook is called in the program flow,
a central Aspect Manager is called (fig. 2). This instance manages the aspects
and decides whether to apply them depending on the joinpoint. Obviously new
aspects can be added to the Aspect Manager at runtime.

18

www6.informatik.uni-erlangen.de

Chair of Computer Science 6 (Database Systems)
Friedrich-Alexander-University Erlangen-Nuremberg

Florian Irmert
31.07.2007

Aspect Manager

Aspect Manager

Advice Binding

Pointcut
Definition

Advice
(Interceptor)

Advice Binding

public int foo(int);

0 invokestatic #44

3 invokevirtual #50

6 astore_2

7 iload_1

8 bipush 10

10 iadd

11 ireturn

Hook

Program flow

Pointcut?

Fig. 2. Central Aspect Manager

3 Problem Domain

Figure 3 illustrates a typical scenario where available services are used to build
new services respectively applications. The new service E utilizes available ser-
vices A and C. Often services cannot be used exactly as they are. A common
approach is to implement wrappers to adapt their behaviour. As a simple ex-
ample service E in figure 4 uses service A but has to transform the result from
miles to kilometers. A wrapper class performs the necessary transformation. If
there are many services which want to use service A, but also require kilometers
instead of miles, it would be desirable to modify A. In the example of figure 3
this would be no problem, because service A is used only by service E. Service
A could therefore be taken offline and replaced by a modified version without
affecting other services. Unlike service A, the adaptation of service C would be
much more difficult, because service D depends on service C, too. If service C is
stopped to apply code changes for adaptation, service D would be perturbed as
well. A runtime mechanism is needed to enable modifications of the behaviour
of a service ”online”. Runtime enhancement of services allows to adopt exist-
ing services to unforeseen requirements. Therefore it facilitates modifications of
services just-in-time and without interference of other services which depend on
services under modification.

Previtali [11] exploits aspects for dynamic updates and employs AOP’s fea-
tures like method or field interception. With d-AOP these modifications can be

19

Service A

Service B

Service C

Service D

(new)
Service E

Fig. 3. SOA example

Service E

Service A

+getDistanceInMiles()
-distance

DistanceService

+getDistanceInKM()

DistanceWrapper

SomeClass

Fig. 4. Usage of a wrapper class

applied at runtime. The integration of d-AOP into a SOA framework constitutes
the technical basis for adaptations of running services to new system conditions
as well as changing business requirements. The main challenge addressed in this
paper is to integrate d-AOP seamlessly to ease the development process of service
oriented applications.

4 Integration of d-AOP into the Equinox OSGi
Framework

In our approach we combine the OSGi framework with dynamic aspect-oriented
programming to realize dynamic adaptation at runtime. We focus on existing,
established technologies represented by OSGi and dynamic aspect-oriented pro-
gramming frameworks. In this chapter we present common technical details of
the aspect-oriented framework we use, as well as we managed to integrate it into
OSGi and how we solved the problems that arose from this approach.

4.1 Aspects as OSGi Bundles

To provide an integrated environment it is necessary that aspects are deployable
as OSGi bundles at runtime. An OSGi bundle consists of Java classes and a
bundle manifest containing meta information. Obviously aspects written in Java
can be packaged in an OSGi bundle. The integration is realized by mapping the
aspect deployment to OSGi bundle lifecycle operations.

The OSGi core specification defines a bundle activator class for each bundle
which is invoked when the bundle is installed and started. The bundle activator
class must implement a specific interface defining two callback methods, one that
is called when the bundle is started and one that is called when the bundle is
stopped. Normally these methods are used to register a bundle itself as listener,
start necessary threads and to clean up after execution. We utilize these two
methods for deploying and undeploying the aspects by calling the correspond-
ing methods of the Aspect Manager. Deploying/undeploying aspects is mapped

20

to installing/starting and stopping/uninstalling the corresponding bundle that
encapsulates the aspect.

Bundle
Classes

Aspect Manager System ClassLoader

OSGi Framework

Bootstrap
ClassLoader

java.lang.*

Bundle Aspect
Bundle

Bundle
ClassLoader

Bundle
Classes Bundle

ClassLoader
Aspects

parent
delegation

{
 AspectManager.
 deployAspect(...)
}

Fig. 5. By default, the parent class loader for an OSGi bundle is the bootstrap
class loader containing all java.lang.* classes. This is sufficient for all ordinary
OSGi bundles (left side). But an aspect bundle must have access to the methods
of the global Aspect Manager. The delegation to the bootstrap class loader would
prohibit that access, because the Aspect Manager is loaded and defined by the
system class loader. That is why parent delegation has to be reconfigured to the
system class loader as parent for the OSGi bundle class loader (right side).

4.2 Class Loading Issues

OSGi makes use of different class loaders to realize the complete separation of
bundle classpaths and namespaces. Thereby the way in which bundles can ac-
cess classes of other bundles can be controlled. By using different class loaders,
bundles can encapsulate classes with identical names and naming conflicts are
avoided. In Java a class is not identified solely by its name, but by the combina-
tion of its name and its defining class loader. Two classes with the same name
can exist in one virtual machine as long as they are defined by different class
loaders.

With this concept, in the OSGi framework different bundles can coexist, but
it complicates the integration of existing aspect frameworks. Following the Java
virtual machine specification [12] a symbolic reference that has not been resolved
is loaded with the same class loader as the defining class. A ClassNotFound-
Exception would be thrown if the bundle activator would try to instantiate
the Aspect Manager (which is loaded by the system class loader), because the
bundle activator is always defined by the bundle class loader. This problem is

21

visualized in figure 5. Including the aspect framework in the bundle classpath
does not solve this problem. The Aspect Manager would be loaded and defined
by the bundle class loader resulting in an own instance for every aspect bundle,
instead of a global one for all bundles.

The Java platform uses a delegation model for loading and resolving classes:
Every class loader has a ”parent” class loader. Everytime a class is going to
be loaded, the class loader initially ”delegates” the search for the class to its
parent class loader before attempting to find the class itself. Constructors in
java.lang.ClassLoader and its subclasses allow to specify a parent class loader
when a new class loader is instantiated. If a parent class loader is not explicitly
specified, the virtual machine’s system class loader will be assigned as the default
parent.

4.3 Delegation

The OSGI specification defines a pre-defined order searching for classes, e.g. if a
bundle imports packages from another bundle, the class loader of the exporting
bundle is included in the searching and loading process. The complete search
order can be seen in figure 6. As described before, the class loading is firstly
delegated to a parent class loader. This parent class loader for a bundle is nor-
mally the bootstrap class loader, which is responsible for loading the classes for
the Java virtual machine and its extensions. In order to enable aspect bundles
to access the Aspect Manager, the parent class loader of a bundle has to be the
system class loader, because the system class loader is responsible to load and
define the Aspect Manager.

The Equinox OSGi framework allows to define the parent class loader for
bundles to be defined via a configuration parameter. With the system class
loader defined as parent class loader the deployment of aspects as bundles works
seamlessly. This solution enables the integration of every ”hook-based” d-AOP
framework (not only JBoss AOP).

5 Related Work

The next section presents other approaches which combine the benefits of OSGi
and aspect-oriented programming.

5.1 AJEER

Martin Lippert presented his ”AspectJ Enabled Eclipse Runtime” (AJEER) [14]
a few years ago. AJEER was originally designed to integrate AspectJ [15] into the
Eclipse framework. As AJEER was implemented, Eclipse did not make use of the
OSGi framework. The weaving part of the AspectJ 1.2 compiler implementation
was added to the Eclipse runtime. Although Lippert discusses the options of
AJEER being extended to support runtime weaving, it is currently limited to
load-time weaving. Furthermore he presents the idea of ”runtime-like” weaving:

22

Start

java.*? Delegate to parent
clas loader found?yes yes

no

no

boot delegation? Delegate to parent
clas loaderyes yesfound?

imported? Delegate to wire’s
exporteryes yesfound?

no
no

no

Search Required
bundles found? yes

no

Search bundle
class path found? yes

no

Search fragments
bundle class path found? yes

no

no

package
exported? yes

dynamic import? Delegate to wire’s
exporteryes yesfound?

nono

no

Failure

Success

1

2

3

4

5

6

7

8

9

Fig. 6. Flowchart for class or resource search order. When a bundles class loader
is requested to load a class or to find a resource, the search must be performed
in the order described by the flowchart above [13].

23

Aspects can be added to bundles at runtime and will be activated when the
bundle is restarted. Currently also this option is not implemented. Since Eclipse
3 is based upon the OSGi framework, AJEER had been reengineered to support
the integration of AspectJ into the new Eclipse kernel. Therefore AJEER can be
used to write aspects in AspectJ as deployable OSGi bundles, but the aspects
can not be activated at runtime.

5.2 AOSGI

AOSGi [16] is a project that emanated from the eclipse equinox incubator. Like
AJEER, it is also intended to support load-time weaving in the OSGi environ-
ment.

Bytecode weaving is achieved by replacing the default framework adaptor.
The AOSGi adaptor intercepts the class loading for each bundle and invokes the
AspectJ weaver. This is possible because of the hookable adaptor architecture
introduced by Equinox 3.2. Standard AspectJ 5 ”aop.xml” files are used by
the weaver, each packaged in the bundle containing the concrete aspects it
declares. The set of configuration files, and hence aspects, visible to a particular
bundle are determined using the normal class loader search order for resources:
ClassLoader.getResources("aop.xml"). Hence only aspects are woven in
a bundle which are defined in bundles it depends on. Two models of aspect
application are possible: ”opt-in” and ”co-opt”. Using the ”opt-in” model an
application developer writes his own aspect or customizes one aspect provided
in a library. The ”co-opt” model allows someone different than the application
developer to write an aspect and package it in a bundle to extend other bun-
dles. AOSGi introduces new OSGi bundle manifest headers to specify which
bundles should be affected by an aspect-promoting bundle. One example is the
Supplement-Bundle header.

Supplement-Bundle: BundleNamePattern
[, BundleNamePattern]*

Wildcards are used to specify a set of bundles. This offers high degrees of
freedom in respect to the definition how bundles are affected by the aspects.
To support additional manifest headers, the adaptor hook mechanism of the
Equinox OSGi framework is exploited, which is the common way to add new
functionality to the Equinox OSGi framework. Note that this solution is specific
to the Equinox OSGi implementation and not part of the OSGi core specifica-
tion.
The presented approaches integrate aspect-oriented programming seamlessly
into the OSGi Service Platform. The main difference to our approach is the lack
of dynamicity.

24

5.3 Jadabs

Frei and Alonso present in [17] an approach to integrate a d-AOP framework,
which uses dynamic proxies to implement the aspects, into the OSGI Service
Platform. They modified the OSGi API and the class loading of the used d-AOP
framework (to solve the class loader problem). In contrast to their approach, we
do not change the API and we are able to deploy the aspects as bundles, which
we consider of utmost importance for a seamless integration.

There are also approaches for integrating AOP into other middleware sys-
tems [18,19]. Nevertheless all of them have in common that they (i) do not
support dynamic AOP and that they (ii) rely on own implementations. In
contrast, our approach uses a well proven middleware (SOA) framework which
can be combined with popular DAOP implementations.

6 Conclusion

This paper presented an approach to integrate JBoss AOP (which supports d-
AOP) into the OSGi Service Platform—an open, modular and scalable SOA
environment—represented by Equinox. Deploying and undeploying aspects is
mapped to OSGi bundle installation and de-installation. With our integration
of the d-AOP framework, adaptation with respect to a changing environment
can be achieved at runtime without stopping or redeployment of active services.
In this paper the technical aspects of a seamless integration have been presented.
Currently, we are working on semantic problems arising when d-AOP is applied
and plan to evaluate our framework with a case study.

References

1. Cámara, J., Canal, C., Cubo, J., Rodriguez, J.M.M.: An Aspect-Oriented Adap-
tation Framework for Dynamic Component Evolution. In Cazzola, W., Chiba, S.,
Coady, Y., Saake, G., eds.: RAM-SE, Fakultät für Informatik, Universität Magde-
burg (2006) 59–70

2. Greenwood, P.: Dynamic Framed Aspects for Dynamic Software Evolution. In Caz-
zola, W., Chiba, S., Saake, G., eds.: RAM-SE, Fakultät für Informatik, Universität
Magdeburg (2004) 101–110

3. Liu, R., Gibbs, C., Coady, Y.: MADAPT: Managed Aspects for Dynamic Adapta-
tion based on Profiling Techniques. In: ARM ’04: Proceedings of the 3rd Workshop
on Adaptive and Reflective Middleware, New York, NY, USA, ACM Press (2004)
214–219

4. Popovici, A., Gross, T., Alonso, G.: Dynamic weaving for aspect-oriented pro-
gramming. In: AOSD ’02: Proceedings of the 1st International Conference on
Aspect-Oriented Software Development, New York, NY, USA, ACM Press (2002)
141–147

5. OSGiAlliance: About the OSGi service platform: Techni-
cal whitepaper. http://www.osgi.org/documents/collateral/

TechnicalWhitePaper2005osgi-sp-overview.pdf (November 2005)

25

http://www.osgi.org/documents/collateral/TechnicalWhitePaper2005osgi-sp-overview.pdf
http://www.osgi.org/documents/collateral/TechnicalWhitePaper2005osgi-sp-overview.pdf

6. Knopflerfish: Knopflerfish OSGi homepage. http://www.knopflerfish.org/

(March 2007)
7. Apache.org: Apache Felix homepage. http://cwiki.apache.org/FELIX/index.

html (March 2007)
8. Eclipse Foundation: Equinox OSGi Framework Homepage. http://www.eclipse.

org/equinox (March 2007)
9. Popovici, A., Alonso, G., Gross, T.: Just-In-Time Aspects: Efficient Dynamic

Weaving for Java. In: AOSD ’03: Proceedings of the 2nd International Confer-
ence on Aspect-Oriented Software Development, New York, NY, USA, ACM Press
(2003) 100–109

10. Vasseur, A.: Dynamic AOP and Runtime Weaving for Java - How does
AspectWerkz Address It? http://aspectwerkz.codehaus.org/downloads/

papers/aosd2004-daw-aspectwerkz.pdf, AOSD 2004 International Conference
on Aspect-Oriented Software Development, Invited Industry Talk (March 2004)

11. Previtali, S.C.: Dynamic Updates: Another Middleware Service? In: MAI ’07: Pro-
ceedings of the 1st Workshop on Middleware-Application Interaction, New York,
NY, USA, ACM Press (2007) 49–54

12. Lindholm, T., Yellin, F.: Java Virtual Machine Specification. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA (1999)

13. OSGi: OSGi R4 Service Platform Core Specification. http://osgi.org/

osgitechnology/downloadspecs.asp (July 2006)
14. Lippert, M.: AJEER: An AspectJ-Enabled Eclipse Runtime. In: OOPSLA ’04:

Companion to the 19th annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, New York, NY, USA, ACM
Press (2004) 23–24

15. The AspectJ Team: The AspectJ Development Environment Guide. http://www.
eclipse.org/aspectj/doc/released/devguide/ (March 2007)

16. Webster, M.: Equinox Incubator: Aspects and OSGi. http://www.eclipse.org/

equinox/incubator/aspects/index.php (February 2007)
17. Frei, A., Alonso, G.: A Dynamic Lightweight Platform for Ad-Hoc Infrastructures.

In: PERCOM ’05: Proceedings of the Third IEEE International Conference on Per-
vasive Computing and Communications, Washington, DC, USA, IEEE Computer
Society (2005) 373–382

18. Vaysse, G., André, F., Buisson, J.: Using aspects for integrating a middleware for
dynamic adaptation. In: AOMD ’05: Proceedings of the 1st Workshop on Aspect-
Oriented Middleware Development, New York, NY, USA, ACM Press (2005)

19. Eichberg, M., Mezini, M.: Alice: Modularization of middleware using aspect-
oriented programming. In Gschwind, T., Mascolo, C., eds.: Software Engineer-
ing and Middleware: 4th International Workshop, SEM 2004. Volume 3437., Linz,
Austria, Springer-Verlag GmbH (March 2005) 47–63

26

http://www.knopflerfish.org/
http://cwiki.apache.org/FELIX/index.html
http://cwiki.apache.org/FELIX/index.html
http://www.eclipse.org/equinox
http://www.eclipse.org/equinox
http://aspectwerkz.codehaus.org/downloads/papers/aosd2004-daw-aspectwerkz.pdf
http://aspectwerkz.codehaus.org/downloads/papers/aosd2004-daw-aspectwerkz.pdf
http://osgi.org/osgitechnology/downloadspecs.asp
http://osgi.org/osgitechnology/downloadspecs.asp
http://www.eclipse.org/aspectj/doc/released/devguide/
http://www.eclipse.org/aspectj/doc/released/devguide/
http://www.eclipse.org/equinox/incubator/aspects/index.php
http://www.eclipse.org/equinox/incubator/aspects/index.php

IDE-integrated Support for Schema Evolution in
Object-Oriented Applications

Position paper

Marco Piccioni1, Manuel Oriol1, Bertrand Meyer1

1 Chair of Software Engineering, ETH Zurich,

Clausiusstrasse 59,
8092 Zurich, Switzerland

{marco.piccioni, manuel.oriol, bertrand.meyer@inf.ethz.ch}

Abstract. When an application retrieves serialized objects of a class that
changed, it may have to cope with modifications of the semantics. While there
are numerous ways to handle the resulting mismatch at runtime, developers are
typically required to provide some code to reestablish the intended semantics of
the new class. We show here how to instruct an IDE with class version
information, in a way that it can provide help and guidance for a semantically
correct schema evolution.

Key words: object-oriented, schema evolution, type converter.

1 Introduction

In object-oriented applications, serializing objects (encoding them in binary or in
some other format) is widely used to store data. Once an object has been serialized, it
can be stored on disk for later deserialization or sent remotely to other applications.
Serialization is more lightweight then either object-oriented and relational full-fledged
database solutions. At the same time, it lacks important services like transaction
handling and object querying. With respect to a relational database, both serializing
objects and using an object-oriented database imply that programmers can remove the
object-relational mapping layer from their application. Eliminating the well known
object-relational impedance mismatch [2] has a price: the stored objects are more
tightly coupled to the application, because an additional layer of indirection is
missing. This can be an issue when the corresponding class structure evolves over
time. The system is then typically not able to read the previously stored objects of a
class anymore because a new version of the class itself is being used. Developers have
therefore to gather information on the stored class version, understand how the values
of the stored objects relate to the semantics of the new class and finally provide an
appropriate conversion routine.

The proposed approach to the schema evolution problem is two-fold. On the one
hand we suggest a robust retrieving algorithm that, after trying different techniques to

27

convert the old objects into the new ones, forbids the application to access potentially
semantically inconsistent objects. On the other hand we propose to help the developer
that works with different versions of a class and provide a solution integrated to an
existing IDE.

Section 2 analyzes four approaches to object serialization, namely Java
serialization, .NET serialization, the db4o object-oriented database system and Eiffel
serialization. Section 3 presents the algorithm that performs the updates. Eventually
Section 4 describes the proposed IDE integration and a first proof of concept
implementation using the Eiffel language.

2 State of the art

This section describes four existing different approaches to object serialization: Java
standard serialization mechanism, the Version Tolerant Serialization within the .Net
framework, the db4o object-oriented database solution and the Eiffel serialization
framework.

2.1 Java serialization

The Java object serialization API, a framework for serializing and deserializing
objects, provides the standard wire-level object representation for remote
communication, and the standard persistent data format for the JavaBeans component
architecture [5]. A class can enable future serialization of its instances by
implementing the Serializable interface. As suggested by Bloch [1], it is worth
noticing that this deceivingly simple addition brings important constraints. In fact,
every Serializable class has an associated unique version identification number,
known as serial version UID. If one does not specify it by declaring a field named
serialVersionUID and by explicitly giving it a value, the system automatically
generates it using an algorithm that closely couples it with the class structure. The
default serialized form of an object is therefore an encoding of the physical
representation of the object graph rooted at the object itself. Considering that some
class details may even vary depending on compiler implementations, unexpected
exceptions during deserialization may happen at runtime.

More generally, by implementing the Serializable interface the flexibility to
change the class implementation in the future significantly decreases, because all its
internal representation becomes part of its exported API, thus invalidating
encapsulation, one of the key principles of object-orientation. In addition to this,
deserialization can be considered an extra-linguistic mechanism for creating objects,
and so it should be responsible for establishing the class invariant and for ensuring
that no illegal access to the object is possible.

While using the default serialized form can sometimes be appropriate, the ideal
serialized form of an object should contain only the logical data represented by the
object, and should be independent of the physical representation. This can be
achieved by implementing a custom serialized form via methods writeObject and

28

readObject, which are reflectively invoked and typically used to establish the class
invariant. A developer can also implement readResolve, which creates a new object
and then delegates to the constructors the task to reestablish the class invariant.

2.2 .NET serialization

The .NET framework, starting from version 2.0, provides a set of features, called
Version Tolerant Serialization (VTS), which makes it easier to handle serializable
types across different versions [11]. VTS comes in two flavors: binary serialization
and XML (Soap) serialization. The binary serialization uses a BinaryFormatter to
provide a compact and efficient byte stream for usage within the .NET framework.
When an object is serialized, the name of the class, the assembly, and all the data
members are serialized. A requirement placed on the serialized object and all the
referenced objects in the object graph is that the corresponding classes have to be
tagged with the Serializable attribute. As the Serializable attribute is not
inherited, the serializable status for a class that inherits from an existing serializable
class must be stated explicitly. If a data member should not be serialized, it is also
possible to tag it using the NonSerializedAttribute attribute. A significant
advantage to using attributes for events as opposed to using interfaces is that the event
mechanism is decoupled from the class hierarchy.

If portability across different platforms is needed, XmlSerializer can be used
instead. This only serializes public properties and fields.

The .NET framework handles schema evolution issues as follows: when an object
of an old version of a class retrieves an object of a newer version with an added data
member, the mechanism ignores the latter. When an object of a new version of a class
with an added data member retrieves an object of an older version of the class, it does
not throw an exception if the new data member is tagged as “optional” with the
OptionalFieldAttribute attribute.

It’s worth noticing that the constructors of an object are not automatically called
during the deserialization process, so implicit class invariant violations may happen if
the developer does not take appropriate actions. In these situations the developer may
adopt a custom serialization by implementing reflectively invoked methods that
provide hooks into the serialization/deserialization process. For example, to provide
an ad hoc initialization to a newly added field, one must create a method that accepts
as an argument a StreamingContext and apply to it the OnDeserializingAttribute
attribute.

2.3 Using an OODBMS for serialization: db4o

When using an object-oriented database like db4o to serialize objects [3, 10], we
neither have to change the class schema by implementing an interface like
Serializable nor have to tag the class with a Serializable attribute. The db4o
container, ObjectContainer, takes care of providing all the needed persistence
services. It receives each object as an argument and stores it as-is. The increased
transparency, the possibility to have services like transaction handling, object

29

browsing, native querying, and a very small memory footprint, suggest that this
solution can be considered an overall better alternative to pure object serialization for
both Java and .NET.

Regarding schema evolution handling, in case the developer needs a custom
behavior to reestablish the invariant with respect to an older stored version of the
object, there are two possibilities. He can either choose to use reflectively invoked
methods like objectOnActivate in the object class or, even better, can register
listeners to specific ObjectContainer events outside the object class. In the latter
case, when the container “activates” an object after retrieval, it invokes the method
onEvent, passing to it the newborn object as an argument, so that it can be properly
initialized.

An alternative and interesting scenario occurs when the developer does not foresee
the possible issues and “forgets” to code appropriate methods to handle the
conversion. Unfortunately, in this case the newly added attributes are automatically
initialized to their default values. This is an excessively confident level of
transparency, because it may lead to introduce in the system objects whose class
invariants may not be valid anymore.

2.4 Eiffel serialization

Eiffel serialization [4, 6, 7] presents a solution based on the identification of three
steps:

1. Detection of version mismatches for previously stored objects.
2. Notification to the system of such mismatches.
3. Safe conversion of the needed objects on demand.

The implementation of this solution is similar to the one previously reviewed for

Java, except for the fact that Eiffel does not need interfaces, because it supports
multiple inheritance. Custom behavior can therefore be provided by inheriting from
class MISMATCH_CORRECTOR and redefining the reflectively invoked feature
correct_mismatch to establish the class invariant. It is also worth mentioning that in
Eiffel an invariant violation is very easy to detect, because the language provides
embedded support for Design by Contract providing an explicit way to declare the
class invariant itself in the class text via the invariant clause.

The Eiffel serialization mechanism cannot be defined as fully “tolerant” either. In
fact an exception is raised as a default if a mismatch is detected at runtime and no
redefinition of the feature correct_mismatch is found. This implementation choice
makes therefore impossible for an inconsistent object to be accepted in the system
after deserialization because a developer happened to forget to explicitly take care of
the conversion.

30

3 Performing the updates: general approach

Programmers that work on different versions of a class have typically very little help
in managing these versions. To be aware of the consequences of deserializing objects
of old versions of a class they have to run numerous test cases, proportional to the
product of the number of stored classes and the number of releases, which can be
quite large. These tests cannot be constructed automatically because, in addition to
binary compatibility, one must test for semantic compatibility. To allow a higher
degree of control on the schema evolution and to keep compatibility with the already
existing solutions, the proposed update algorithm consists in several steps, illustrated
in the synthetic flow-chart in Fig. 1.

Fig. 1. Flow-chart of the proposed update algorithm from an old class version v1 to a new class
version v.

The algorithm first checks if the retrieved version is the same as the current
version. If it is not, it will check if a converter is available in the current class for the
stored version (see 4.1). If it is available, it will invoke and pass the retrieved type as
an argument. If a converter is not available, it will further check if the class inherits
from a specific class that can help in handling the mismatch (like
MISMATCH_CORRECTOR in Eiffel) and invoke a redefined feature (like
correct_mismatch in Eiffel). If both the last two checks fail, it raises an exception to
state clearly that an inconsistency may happen and to stop the application before the
inconsistent object can do any damage. Thus the algorithm takes into account several
mechanisms for handling schema evolution, and assigns to them different priorities.

v = v1?

converter? conversion

no

callback?

no

conversion
no

conversion Exception

31

4 IDE support for handling schema evolution in Eiffel

To ease the task of writing the type converters and the mismatch correctors we
propose an integration in the EiffelStudio IDE to make it class-version-aware and
therefore capable of providing support to the developer for taking the most
appropriate action. This implies augmenting the stored objects with additional meta-
information about versions, to be used at retrieval time.

4.1 Type converters

Neamtiu et al., in their work on dynamic software evolution [9], proposed to use type
converters to update data types at runtime. Their solution relies on heuristics that
builds semi-automatically the converters from static analysis of the code and its
instrumentation. The Eiffel language has a convert clause [4, 8] to specify
conversions from a type to another. The mechanism is already used to provide a
systematic way to handle conversions between basic (or primitive) types like INTEGER
or REAL, or between STRING types as represented in Eiffel and .NET. Similar
conversions are supported by most programming languages in an ad hoc fashion.
While the basic idea to provide conversion functions that take care of the conversion
details is well known, having the converters embedded in the language provides the
advantage of a coherent framework that takes care of the conversions at runtime
without additional instrumentation.

An important semantic constraint of this approach is that a type is considered to
either conform (in the sense of inheritance) or convert to another. As a type obviously
conforms to itself, it is not possible to convert a type to another type as-is. This
happens because the two types retain the same name, even if they have a different
schema, so the compiler would reject the conversion.

Our assumption is that two versions of the same class are different types. With this
in mind, we propose a prototype implementation that is mostly transparent to the
developer and generates different names for different versions of the class to use the
converter mechanism.

4.2 An integrated EiffelStudio GUI

The main intent of our proposal is to guide the developer while delivering a new
version of a class as version-aware as possible. This means that the class, once
consolidated, knows how to handle all the possible type conversions that may be
necessary in the future.

Both type converters and the update algorithm shown in figure 1 are the backbone
of a semantically consistent framework for schema evolution.

The GUI is fully integrated in the EiffelStudio class browser. It is the presentation
layer of the proposed framework, and fosters interaction between the developer and
the underlying mechanism. It performs the following basic tasks:

1. Enables browsing of all the previous class versions.

32

2. Enables consolidation of the current version so that it is ready to be released
(it saves it with the updated version information).

3. Proposes different code templates for the type converters bodies, depending
on previously recorded refactorings.

4. Issues an appropriate warning, stating that conversions from older versions
to newer ones will not be possible anymore at runtime, if the developer
refuses to take appropriate action to handle the conversion.

4.3 Implementation details

Before realizing all the steps illustrated above, it is necessary to make a preprocessor
in order to tag class names with a version number in a transparent way.

In addition, the GUI backend has to:

1. Record developer’s actions, more specifically the different kind of
refactorings that may take place.

2. Associate the different refactorings to the different versions.
3. Read the recorded refactorings for the current version in case of

consolidation.
4. Generate different code templates for the type converters bodies, depending

on the recorded refactorings.
5. Consolidate the converters depending on the developer’s choice.

As the overall effort is non-trivial, it is necessary to separate the intended task into
different steps, undertaken in an iterative fashion. As a minimum support, the
framework does the following:

1. Provides a skeleton implementation of at least a converter body.
2. Performs a test of object creation by checking a possible violation of the

current class schema with the invariant of the old version, looking for a
possible violation. Issues a warning if a violation occurs.

3. Suggests an initialization that does not invalidate the new invariant for added
fields.

4. Issues a warning to the developer, suggesting that it is his responsibility to
check and complete the converter implementation, as this operation cannot
be fully automated.

In addition to handling the inclusion of a new attribute in the class schema, an

extension of the support can include different kinds of refactoring, like:

• Refactorings on data fields:
 Removing an attribute.
 Renaming an attribute.
 Changing an attribute type.
 Changing an attribute visibility.

• Refactorings on routines:

33

 Adding a routine.
 Removing a routine.
 Renaming a routine.
 Changing a routine return type.
 Changing a routine visibility.
 Changing the type of arguments of a routine.
 Changing the order of arguments of a routine.

• Refactorings on classes
 Renaming a class.
 Adding an inheritance relationship.
 Removing an inheritance relationship.
 Changing the type of a generic parameter.
 Changing the constraint of a generic parameter.

4.4 A first proof of concept

To test the idea of using converters for schema evolution we have tagged class names
with version numbers and have showed with a prototype that the approach is feasible.
Assignments and argument passing from the old version to the new one are also
tested:

http://se.inf.ethz.ch/people/piccioni/software/prototype_code.zip.

Changing explicitly class names is not desirable because the new version would

break all the clients that are using the old class version, and in addition a separate
concern like serialization should not be so tightly coupled to the class itself via its
name. The class name should in fact ideally reflect the underlying abstraction only.

We therefore propose to introduce version numbers to the serialized objects and
then use the converters in a way that they accept the same type with a different
version number.

To give an idea of the converters syntax, we hereafter show an extract from the
prototype implementation:

class MY_SAMPLE_CLASS

 create

 make,

 from_my_sample_class_v1

 convert

 from_my_sample_class_v1({MY_SAMPLE_CLASS_V1})

 feature -- Access

34

 sample_integer: INTEGER

 sample_string: STRING

 added_attribute:STRING

 feature -- Conversion

 from_my_sample_class_v1(a_v1:MY_SAMPLE_CLASS_V1)

 --the ad hoc converter

 do

 sample_integer := a_v1.sample_integer

 sample_string := a_v1.sample_string

 added_attribute:="This string has been added"

 end

end

5 Conclusions and Future Work

We have shown how to provide better support for handling schema evolution in
object-oriented applications. This can be achieved using a two-sided approach. On the
one hand we instruct the system to record specific refactorings across different class
versions so that it can propose reasonable templates for the converters. On the other
hand we propose to improve the developer’s interaction with the system by
integrating a module in an existing IDE. To release a fully integrated module we need
to:

• Adapt the embedded converter mechanism in the Eiffel language so that it

can accept to convert two different versions of the same class.
• Program an extension to the EiffelStudio GUI that enables browsing of all

the previous class versions, saves them with the updated version information,
proposes different code templates for the type converters bodies (depending
on previously recorded refactorings).

• Program an extension to the framework that can include different kinds of
refactoring.

This is what we are currently implementing.
In the future, the automatic support can also be further extended including:

35

• The ability to serialize objects of the current version into objects of previous

versions.
• The ability to deserialize objects of more recent versions into objects of

previous versions.

References

1. Bloch, J.: Effective Java. Prentice Hall PTR. (2001)
2. Date C.: Introduction to Database Systems 8th ed. Addison Wesley (2003)
3. db4o object oriented database API documentation,

http://www.db4o.org/community/ontheroad/apidocumentation/index.html
4. ECMA committee TC39-TG4, ECMA International standard 367. Eiffel Analysis, Design

and Programming Language (2005)
5. Gosling J., Joy B., Steel G. and Bracha G.: The Java Language Specification. 3rd ed. Addison

Wesley (2005)
6. Meyer B.: Object Oriented Software Construction. 2nd ed. Prentice Hall PTR (1997)
7. Meyer B.: Eiffel: The Language. Prentice Hall (1992)
8. Meyer B.: Conversions in an Object-Oriented Language with Inheritance, in JOOP (Journal

of Object-Oriented Programming), vol. 13, no. 9, January 2001, pages 28-31.
9. Neamtiu I., Hicks M., Stoyle G. and Oriol M.: Practical Dynamic Software Updating for C.

ACM Conference on Programming Language Design and Implementation (PLDI). Ottawa,
Canada (2006)

10. Paterson J., Edlich S., Hörning H. and Hörning R.: The Definitive Guide to db4o. Apress
(2006)

11. Version Tolerant Serialization, http://msdn2.microsoft.com/en-us/library/ms229752.aspx

36

Towards correct evolution of components

using VPA-based aspects

Dong Ha Nguyen and Mario Südholt

OBASCO project; Ecole des Mines de Nantes - INRIA, LINA; Nantes, France
{Ha.Nguyen, Mario.Sudholt}@emn.fr

Abstract. Interaction protocols are a popular means to construct cor-
rect component-based systems. Aspects that modify such protocols are
interesting in this context because they support the evolution of such
components. A major question then is whether aspect-based evolutions
preserve fundamental notions of correctness, in particular compatibility
and substitutability, of components. In this paper we discuss how such
component correctness properties can be proven in the presence of as-
pect languages of limited expressiveness. Concretely, we show how com-
mon evolutions involving VPA-based aspects [12] can be proven correct
directly in terms of operators of the aspect language. Furthermore, we
present first ideas of how to use existing model checkers for the automatic
verification of such properties.

1 Motivation

Interaction protocols are a popular means to construct correct component-based
systems and document them [19, 6]. Relying on explicit protocols, evolution of
component-based systems can be frequently expressed in a concise manner using
aspects that modify such protocols [12].

A major question for the evolution of component-based systems is whether
evolution preserves compositional properties of these systems, in particular com-
patibility and substitutability of components, two fundamental notions that are
typically defined in terms of subset relationships of trace and failure sets admit-
ted by the original and evolved versions of a system [19, 13]. Currently, almost all
component-based systems with interaction protocols have used finite-state pro-
tocols; only few work has explored the preservation of compositional properties
in the context of aspects modifying such interaction protocols.

In this paper we consider how compositional properties can be defined and
verified in the context of the evolution of components that are equipped with a
more expressive brand of interaction protocols, protocols defined in terms of Vis-
ibly Pushdown Automata (VPA) [2]. VPA allow to define protocols that include
well-formed nested contexts, such as correct nesting of recursive calls to and re-
turns from a server. VPAs are strictly more expressive than finite-state automata

⋆ This work has been supported by AOSD-Europe, the European Network of Excel-
lence in AOSD (http://www.aosd-europe.net).

37

(which generate regular languages) but strictly less so than pushdown automata
(which generate context-free languages). In contrast to finite-state based sys-
tems, VPA-based protocols allow (some) nested terms to be correctly matched
without having to restrict the nesting depth. In contrast to pushdown automata,
VP languages are closed under all basic operations, including intersection and
complement, and all basic decision problems are decidable. As the main contribu-
tion of this paper, we discuss how compatibility and substitutability properties of
component-based applications can be proven if interaction protocols are subject
to evolution using VPA-based aspects [12].

Concretely, we motivate and sketch three extensions to the VPA-based aspect
language that are useful for the evolution of component systems: a more general
definition of sequence pointcuts, a new pointcut operator that allows nested con-
texts to be matched if their depths exceed a threshold and a new advice construct
that allows to close an open nested context. Furthermore, we introduce several
proof methods that can be used to prove the preservation of compositional prop-
erties if the resulting aspect language is used for component evolution. Finally,
we present preliminary results how to use existing model checking techniques for
the automatic verification of such properties.

The paper is structured as follows. In Section 2, we motivate and sketch
three extensions to our VPA-based aspect language. We introduce corresponding
proof methods for software components in Sec. 3. VPA-based aspects and model
checking techniques are the subject of Sec. 4. Finally, we give a conclusion and
present future work in Sec. 6.

2 VPA-based aspects for component evolution

In the following we illustrate the use of expressive, i.e., non-regular aspect lan-
guages in the context of (distributed and recursive) P2P algorithms. Fig. 1(a)
shows a protocol which allows nodes to join or quit a P2P network, repeatedly
execute recursive queries and abort queries if requested (by means of an advice
abortRequest ¤ abort).

The regular aspect on the left hand side does not enforce an important re-
striction: abort requests should only be allowed if there is at least one on-going
query (the number of replies occurring at state 1 may equal or even exceed the
number of queries in the regular case). The VPA-based aspect shown on the right
hand side, however, ensures this property by distinguishing the first query and
the matching reply events from the remaining ones by associating stack symbols
to transitions (in the figure, stack symbols are set as indexes to execution events
and matching replies are underlined). Abort requests therefore may occur only
in contexts where at least one query is open. Furthermore, VPAs ensure that
there cannot be more abortRequest events than query events.

In previous work [12], we have proposed a language for VPA-based aspects
and a corresponding execution library. This language allows to define pointcuts in
terms of paths in a VPA whose matching during execution of a base application,
e.g., an OO program, triggers the execution of advice as illustrated in 1(b). We

38

0 1 2

join
query

reply

abortRequest ⊲abort

abortedquit

(a) Aborting on-going queries (regular)

30 1 2

queryq

replyq

abortRequest ⊲abort

aborted

join

quit

query f st

reply f st

(b) Aborting on-going queries (VPA)

now illustrate that VPA-based aspects are useful for the evolution of compo-
nent-based systems by presenting evolutions that can be supported using three
new operators that extend our original aspect language.

Evolution of the recursive structure of P2P algorithms using pointcut operators.

Evolution of distributed algorithms, such as P2P algorithms, often aims at the
optimization of the underlying traversal strategy. A simple example of a corre-
sponding heuristic is to perform a more superficial but faster search on nodes
whose distance from the root node exceeds a certain threshold. Since VPAs faith-
fully allow to define the depth of nested terms, such heuristics can be directly
expressed using a pointcut operator D>k

m that matches only calls to m that oc-
cur at a depth larger than k. For example, the following aspect caches queries at
depth greater than 5 (where µa. . . . ; a denotes recursion in VPA-based aspects):

µa. D>5

queryq
¤ getCacheV alue ; a

Accomodating new execution events through general sequencing of pointcuts. The
evolution of component systems frequently requires to cope with new execution
events, either by abstracting from them (i.e., allow interleaving of such events
on the protocol level) or, to the contrary, forbid the occurrence of such events.
Current aspect languages for protocols typically include a sequence operator ; on
the pointcut level, such that terms a; b allow either no interleaving (i.e., the term
corresponds to a single-step transition as, e.g., JAsCo’s stateful aspects [17]) or
interleaving of arbitrary events between occurrences of a and b (as the stateful
aspects of [4, 12]).

Using the latter semantics, the aspect

µa. join ; queryq ¤ createSession ; a

(repeatedly) creates sessions once the current node has joined a P2P network,
occurrences of arbitrary events followed by a query. However, the occurrence

39

of events, e.g., accessing the result of a query before execution of the query,
cannot be ruled out with this form of sequencing alone. Relying only on the
first semantics, individual transitions yield awkward formulations of non-trivial
protocol-modifying aspects because all interleaving of events has to be defined
explicitly.

In order to allow the concise definition of protocol evolution by arbitrary
interleaving as well as through the (mandatory) absence of interleaving we have
introduced a general sequencing operator ;I where I specifies the set of events,
possibly ∅, that may be interleaved between the argument events.

The evolution consisting in forbidding previous accesses to the query result
can then simply be expressed as:

µa. join ;¬accessResult queryq ¤ createSession ; a

Handling of error conditions using advice operators. The evolution of compo-
nent-based systems frequently consists in the introduction of behavior to cor-
rectly handle error situations. In the case of recursive distributed algorithms er-
ror handling may involve the introduction of events that close a number of open
recursive calls in order to skip the traversal of part of the underlying distributed
network in which an error occured. Using VPA-based aspects such error handling
strategies can be expressed using the advice-level operation closeOpenCallm that
closes the open call to m: pointcuts matching on nested contexts can then be
used to restrict the application of such advice to appropriate parts of the net-
work. The following example illustrates the use of a closing operator to add a
number of “fake” replies to queries when the query exceeds a given connection
timeout (where ¤ denotes the choice between alternatives):

µa. queryf ; (replyf ¤ (connectionT imeOut ⊲ closeOpenCallqueryf
)) ; a

3 Preservation of compositional properties

In this section we address the problem whether compositional systems that are
subjected to evolution by VPA-based aspects can be proven to preserve funda-
mental composition properties. Our main point is that, in contrast to general
aspect languages such as AspectJ, VPA-based aspect programs are amenable to
formal correctness proofs.

Figure 1 illustrates the underlying model of component evolution and the
compositional properties we consider. Starting from two protocols p1, p2 that
constrain the interactions of two collaborating components C1, C2 a VPA-based
aspect A is applied to p2 yielding the protocol p3 that defines the interactions of
the component C3 after evolution. As indicated in the figure we are interested
in two fundamental correctness properties for components, compatibility and
substitutability (see, e.g., [13]).

Generally, e.g., if turing-complete pointcut and advice languages are used
for component evolution (as in AspectJ where arbitrary Java methods may be
called in if-pointcuts and advice), such component properties cannot be proven

40

C1

p1

C2

p2

C3

p3

Is compatibility or substitutability

preserved ?

apply aspect A

compatibility or substitutability
holds

evolved component p3 = A(p2)

Fig. 1. Checking for preservation of compatibility/substitutability

formally. Furthermore, even in specific cases where a proof is possible, it can
typically be performed only in terms of the woven program and not simply in
terms of the aspects themselves. VPA-based aspects, however, support formal
proofs of such properties because of their limited expressiveness and allow some
important properties be proven simply by considering properties of the aspect
language only. To this end we propose to exploit the “domain specific” char-
acteristics of VPA-based aspects: proofs over nested contexts as well as regular
structures can be performed directly in terms of corresponding features of our
pointcut (indexed calls) and advice language (closeOpenCall).

Concretely, we demonstrate in the following three different types of proofs of
property preservation that are supported by VPA-based aspects:

P1) Proofs that depend only on the properties of the aspect language, i.e., that
can be performed in terms of the evolution aspect A only.

P2) Proofs that can be performed in terms of A and properties of classes of
protocols to which p1 and p2 belong.

P3) Proofs that require full knowledge of A and p1–p3.

We use standard trace-based notions of compatibility and substitutability [19]
in this paper. Two protocols are compatible if they do not give rise to any conflict
during execution, i.e., no unexpected message is received during collaboration
of two components according to their respective protocols. Substitutability of
components is defined using trace set inclusion: protocol p1 is substitutable for p2

if its trace set is a superset of the trace set generated by protocol p2. Since VPAs
are closed under complement (“negation”) it is, however, possible to apply the
proof methods to more expressive notions of composition properties, for instance
substitutability in the presence of failures [13].

In the following we will present three examples that illustrate the different
proof types introduced above.

P1: supporting evolution of error handling. VPA-based aspects are unique (in
particular compared to finite-state based approaches) in being able to handle
a large class of traversals of distributed recursive algorithms, such as P2P al-
gorithms. Frequently, error handling in such algorithms consists in terminating
the exploration of some part of the network and search elsewhere. The action
closeOpenCall(m) that we have introduced in the advice language directly sup-
ports such error strategies by allowing to close a nested call of the method m.

41

We can exploit the precisely defined semantics and limited effect of the action
closeOpenCall to prove some corresponding properties simply in terms of its
definition. For example:

If p1,p2 are protocols that recurse using m, p2 is substitutable for p1 and
aspect A employs closeOpenCall to add returns of m at the end of the
execution of protocol p2, then the adapted protocol p3 is substitutable
for p1.

P2: proving compatibility for depth-cutting heuristics. Recursive distributed al-
gorithms frequently do not unconditionally stop traversals at the top level, but
typically do so only in specific contexts. A common example are heuristics that
are formulated in terms of the traversal depth from the node where the search has
been initiated. Since VPA-based aspect allow the explicit definition of aspects
in terms of the nesting depth using the pointcut operator D>k

mc
, corresponding

compositional properties can be proven in terms of properties of this operator
and classes of protocols to which it is applied. For example:

If
– p1 belongs to the class of recursive protocols that repeatedly allows

recursive remote calls and returns in m: µa.mc ¤ mc ; a,
– p2 belongs to the class of protocols that include a remote call to m,
– p1, p2 are protocol compatible and
– aspect A employs a depth-defining operator D>k

mc
applying over p2

Then p1 and A(p2) are also compatible.

This property holds because the aspect may only cut calls to m from traces
of p2: the resulting traces remain compatible with those admitted by p1.

P3: proving substitutability in terms of p1,p2 and A. Let us reconsider protocols
p1,p2 as in the first example i.e., p2 represents a less restrictive recursive protocol
than p1 and p2 is substitutable for p1. Assume that now we would like to adapt
protocol p2 in order to cut the depth of queries to k using an aspect with a
depth-defining operator D>k

mc
. In this case the resulting protocol p3 is in general

not substitutable for p1, since p1 may admit calls of depth deeper than k. By
an analysis of p1, we may find that the depth limit of p1 is q and q ≤ k: we can
then prove that p3 is actually substitutable for p1.

4 Towards model checking of VPA-based properties

We now consider the problem of using model checking techniques as a support for
proving the preservation of properties of component systems that are subject to
aspect-based evolution. We present first preliminary results on two main issues
concerning the application of model checking: (i) adaption of the default model
checking procedure to the verification of systems with VPA-based aspects and
(ii) selection of an appropriate model checker.

42

Goldman and Katz [9] have introduced a formal framework for verifying the
correctness of an aspect in a modular way. The general ideas of that approach
are as follows. Assume that an aspect is defined by its pointcut designator ρ and
advice A represented by a single state machine. Furthermore, the assumptions
of the aspect about the base programs into which it may be woven are explicitly
specified in form of an LTL formula ψ from which a tableau Tψ can be con-
structed. Weaving two state machines respectively represented by the tableau
Tψ and aspect advice A according to pointcut ρ results in an augmented state

machine for the composed system T̃ψ. Then a model checker is employed to

verify whether the system T̃ψ satisfies a property ϕ over the complete system.
This means that if we could establish that a specific base program satisfies the
assumptions ψ we do not have to run the verification process again in case it
has already been done for the combination A, ρ, ψ, and ϕ before. Moreover, the
real composed system has never to be model checked and thus this verification
approach achieves modularity.

We plan to adapt the above framework for model checking to the correctness
of VPA-based aspects. The underlying idea of the adaptation is to define an
abstraction of VPA-based programs and aspects into regular systems and then
apply model checking techniques. Application of existing model checkers requires
to fix the depth of recursive contexts matched through VPA-based expressions,
which implies to sacrifice some accuracy by using a suitable approximation.
Through an extension of the approach of Goldman and Katz we intend to provide
a means to efficiently model check abstractions of recursive VPA-based structures
in which the depth is fixed but arbitrary.

Table 1. Some model checkers and corresponding properties

Model checker System model Property Remarks

SPIN Promela (SPIN’s language) LTL popular

NuSMV Finite state machine CTL,LTL popular

CBMC C source code

Bandera Java source code no longer developed

UPPAAL Real-time automata CTL

Verus Real-time automata CTL no longer developed

A second important factor for such an approach is the specific model checker
being selected because of their rather different features, such as their system
models, that are more or less suitable for our endeavor. Table 1 presents a list
of some well-known model checkers and some of their features.

Three properties of model checkers we are particularly interested in are (i)
how the input system can be modeled, (ii) what types of properties are sup-
ported, and (iii) how large of a system on which it can model check.

System model. All model checkers on Table 1 input system models as textual
descriptions of state machines in their respective, specific formats. As previously

43

mentioned, since we are dealing with VPA-based systems, we have to transform
them to less expressive automata then encode them in the input formats which
are supported by these model checkers. This can be automatically done by a
transformation tool, but should be easier for checkers using input languages
similar to state machines (such as NuSMV and SPIN) than for checkers using
general purpose languages (CBMC and Bandera).

Property specification. Most of the model checkers support property specified
in some variants of LTL or CTL logics. Among them, model checker NuSMV
provides the most flexibility by accepting both LTL and CTL properties. Check-
ers that are geared towards the handling of specific classes of properties (e.g.,
real-time properties in the case of UPPAAL and Verus) seem less appropriate
for our approach.

Scalability. Since the abstraction from VPA-based properties to regular sys-
tems generates large finite-state machines (that are of a very specific form), the
scalability of model checkers is an important criterion for the feasibility of our
approach. However, while the first two features, system and property specifica-
tion of model checkers, can be evaluated simply, it is more difficult to have a
comparative view on the scalability feature since verification tools are typically
designed and optimized for different specific domains. Among current model
checkers, SPIN and NuSMV are highly recognized for their effectiveness in the
presence of large systems.

Taking all the factors into consideration, we have chosen to perform first experi-
ments on the model checking of VPA-based evolution properties using SPIN and
NuSMV.

5 Related work

There is few related work on aspect-based evolution for component-based sys-
tems that considers the preservation of correctness properties for those systems
after being changed by aspects. As to the best of our knowledge, this proposal
is the first exploiting formal methods to investigate the preservation of composi-
tional properties such as compatibility and substitutability for component-based
systems that are subject to evolution by protocol-modifying aspects. However,
our work still shares common interests with a large body of work covering as-
pects, components, and applications of formal methods on analysis and verifica-
tion.

There are some approaches which consider aspect languages that support pro-
tocols, most notably [1, 5, 18]. Approaches [1, 5] feature regular aspect languages
and a framework for static analysis of interaction properties. The language in-
troduced by Walker and Viggers[18], one of the very few approaches providing
non-regular (but not turing-complete) pointcut languages, proposes tracecuts
which provide a context-free pointcut language. However, all of the above ap-
proaches do not use the language for an integration of aspects and components

44

or explore the problem of property-preserving for systems that have protocols
being modified by aspects. Faŕıas [7] has proposed a regular aspect language for
components that admits advice modifying the static structure of protocols and
considered proof techniques for the resulting finite-state based aspects.

There exist a large number of proposals that aim at applying AOP over
component-based systems, e.g., [8, 16, 14]. However, the aspect languages in
those approaches do not provide explicit support for component protocols. Some
of these approaches consider component compatibility, however, in a limited
sense to our work: aspects are usually employed in such work to transparently
introduce adaptation to components and thus preserve component compatibility.
Our approach, in contrast, focuses on preserving protocol compatibility even if
aspects have visible effects on interaction protocols.

Few work on evolution of component protocols seems relevant to our work.
Braccialia et al. [3] present a formal methodology for automatically adapting
components with mismatching interacting behaviors i.e., conflicts at the protocol
level. Protocols considered there are expressed by using a subset of µ−calculus.
They do not consider how component properties can be proved in terms of proof
methods that exploit properties of modification operators. Ryan and Wolf [15]
investigate how applications can accommodate protocol evolution. However, this
approach concerns mainly syntactic changes on protocols.

Another category of related work is the application of formal methods to anal-
yse aspect systems, such as [10, 11]. Our approach differs from those approaches
in that we exploit the protocol-based specificities of our aspect language to prove
composition properties of software components.

6 Conclusion and future work

In this paper we have investigated the preservation of compositional properties
in the context of aspect-based evolutions on components. We have shown that
aspect languages of limited expressiveness admit formal proofs of fundamental
compositional properties directly in terms of the aspect languages. Concretely,
we have shown that VPA-based aspects support formal proofs of component
compatibility and substitutability in the presence of aspect-based evolutions of
recursive distributed algorithms. As a second contribution, we have introduced
three extensions to our VPA-based aspect language that support common evo-
lutions: a more flexible sequencing operator, a depth-defining pointcut operator
and a closing operator for recursive calls. Finally, we have presented first ideas
of how to use use existing model checkers for the automatic verification of such
properties and evaluated the characteristics of some popular model checkers to
this end.

In the future we intend to work on extensions of the aspect language for VPA-
based properties, extend the set of component evolutions that can be handled
with our approach and provide a working method for the automatic verification
of such evolutions with existing model checkers.

45

References

1. Chris Allan, Pavel Avgustinov, Aske Simon Christensen, et al. Adding trace match-
ing with free variables to AspectJ. In Richard P. Gabriel, editor, ACM Confer-
ence on Object-Oriented Programming, Systems and Languages (OOPSLA). ACM
Press, 2005.

2. Rajeev Alur and Parthasarathy Madhusudan. Visibly pushdown languages. In
Proceedings of the thirty-sixth annual ACM Symposium on Theory of Computing
(STOC-04), pages 202–211, New York, June 13–15 2004. ACM Press.

3. Andrea Braccialia, Antonio Brogi, and Carlos Canal. A formal approach to com-
ponent adaptation. Journal of Systems and Software, 2005.

4. R. Douence, P. Fradet, and M. Südholt. A framework for the detection and res-
olution of aspect interactions. In Proc. of GPCE’02, LNCS 2487, pages 173–188.
Springer Verlag, October 2002.

5. Rémi Douence, Pascal Fradet, and Mario Südholt. Composition, reuse and inter-
action analysis of stateful aspects. In Proc. of 3rd International Conference on
Aspect-Oriented Software Development (AOSD’04), pages 141–150. ACM Press,
March 2004.

6. Andrés Faŕıas and Mario Südholt. On components with explicit protocols satisfying
a notion of correctness by construction. In International Symposium on Distributed
Objects and Applications (DOA), volume 2519 of LNCS, pages 995–1006, 2002.

7. Andrés Faŕıas and Mario Südholt. Integrating protocol aspects with software com-
ponents to address dependability concerns. Technical Report 04/6/INFO, École
des Mines de Nantes, November 2004.

8. Steffen Göbel, Chrstoph Pohl, Simone Röttger, and Steffen Zschaler. The
COMQUAD component model — enabling dynamic selection of implementations
by weaving non-functional aspects. In Proceedings of AOSD’04. ACM Press, 2004.

9. Max Goldman and Shmuel Katz. Maven: Modular aspect verification. In TACAS,
pages 308–322, 2007.

10. Shmuel Katz and Marcelo Sihman. Aspect validation using model checking. In
Verification: Theory and Practice, pages 373–394, 2003.

11. Shriram Krishnamurthi and Kathi Fisler. Foundations of incremental aspect
model-checking. ACM Trans. Softw. Eng. Methodol., 16(2):7, 2007.

12. Dong Ha Nguyen and Mario Südholt. VPA-based aspects: better support for AOP
over protocols. In 4th IEEE International Conference on Software Engineering and
Formal Methods (SEFM’06). IEEE Press, September 2006.

13. Oscar Nierstrasz. Regular types for active objects. In O. Nierstrasz and
D. Tsichritzis, editors, Object-Oriented Software Composition, chapter 4, pages
99–121. Prentice Hall, 1995.

14. Nicolas Pessemier, Lionel Seinturier, Thierry Coupaye, and Laurence Duchien. A
model for developing component-based and aspect-oriented systems. In Proceedings
of the 5th International Symposium on Software Composition (SC06), volume 4089
of Lecture Notes in Computer Science, page 259273, Vienna, Austria, mar 2006.
Springer-Verlag.

15. Nathan D. Ryan and Alexander L. Wolf. Using event-based translation to support
dynamic protocol evolution. In ICSE ’04: Proceedings of the 26th International
Conference on Software Engineering, pages 408–417, Washington, DC, USA, 2004.
IEEE Computer Society.

16. Davy Suvée, Wim Vanderperren, and Viviane Jonckers. JasCo; an aspect-oriented
approach tailored for component-based software development. In ACM Press,

46

editor, Proc. of 2nd International Conference on Aspect-Oriented Software Devel-
opment (AOSD’03), pages 21–29, March 2003.

17. W. Vanderperren, D. Suvee, M. A. Cibran, and B. De Fraine. Stateful aspects in
JAsCo. In Proc. of SC’05, LNCS 3628. Springer Verlag, April 2005.

18. Robert J. Walker and Kevin Viggers. Implementing protocols via declarative event
patterns. In Proceedings of the ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering (FSE-12), pages 159 – 169. ACM Press, 2004.

19. Daniel M. Yellin and Robert E. Strom. Protocol specifications and component
adaptors. ACM Transactions of Programming Languages and Systems, 19(2):292–
333, March 1997.

47

48

Aspect-Oriented and Reflection for
Software Evolution

Chairman: Awais Rashid, Lancaster University, UK

Characteristics of Runtime Program Evolution

Mario Pukall and Martin Kuhlemann

School of Computer Science, University of Magdeburg, Germany
{pukall, kuhlemann}@iti.cs.uni-magdeburg.de

Abstract. Applying changes to a program typically means to stop the
running application. This is not acceptable for applications that need
to be highly available. Such applications should be evolved while they
are running. Because runtime program evolution is nontrivial we give
terms and definitions which characterize this process. We specify two
major dimensions of runtime program evolution – time of evolution and
types of evolution. To sketch the state of the art we pick out different
approaches which deal with runtime program evolution.

1 Introduction

Nowadays requirements for complex applications rapidly change due to fre-
quently altering environmental conditions. Erlikh [1] and Moad [2] calculate the
costs to maintain and evolve software to be 90 percent of the overall engineer-
ing costs. Attending new requirements using well-known software re-engineering
techniques results the recurring schedule: stopping the application, applying the
changes, testing the application, and restarting the changed application. This is
unacceptable for applications that should be highly available, e.g. security appli-
cations, web applications or banking systems, because unavailability causes costs.
Idioms like design patterns, component-based approaches, and configurable ap-
plications help to reduce the costs of maintenance, evolution, and unavailability
of applications. Nevertheless, these approaches cannot guarantee availability of
applications during evolution.

In this paper we define characteristics of runtime program evolution based
on object-oriented programming paradigm. Concerning these characteristics we
evaluate different existing approaches of runtime evolution. By this evaluation
we try to find out, what the potentials of the approaches in terms of runtime
evolution are. For that reason the approach’s technical differences remain out of
consideration.

2 Terms and Definitions

In this section we define terms which characterize runtime program evolution.
We define time and types of evolution as the root categories because these are
major features of runtime evolution.

51

2.1 Time of Evolution

We consider 3 different stages of program evolution: Build time, Hire time and
Deployment time (see Figure 1). Build time references the process of static soft-
ware evolution where a software engineer implements the changes in the pro-
gram’s source code. Building the program (i.e., source code compilation) ter-
minates the process. Hire time is the time after the compilation of a class but
before loading this class, e.g. before creating an instance of a changed class at all.
Deployment time is the time after loading the code for execution, e.g. after class
loading. Hire time and deployment time belong to runtime program evolution,
whereas build time belongs to static program evolution.

Fig. 1. Dimensions of Evolution Time.

2.2 Types of Evolution

We identified three fundamental types of runtime evolution: Predictability, Kind
of Code and Kind of Program Changes.

Predictability. In some cases the application can be prepared for future
program evolution – so called anticipated program changes. We experienced that
the amount of program changes which cannot be foreseen (i.e. unanticipated
program changes) is much bigger than the amount of predictable changes.

Kind of Code. Kind of Code classifies the code which must be changed to
achieve modifications into: source code, byte code (intermediate code of platform
independent languages) and native binary code (directly executable by the host
system).

Kind of Program Changes. Gustavsson and Assmann [3] identified two
types of program changes: source code and state changes. In our work we concen-
trate on changes of program’s source code because source code changes can also
effect the program’s state. However, program state changes can be prepared us-
ing interfaces and introducing the new state through, e.g. Java Remote Method
Invocation (RMI) or Java Platform Debugger Architecture (JPDA).

In Table 1 we give our classification of program changes based on source code
modifications. The classification respects major attributes of object-oriented

52

paradigm and contains: changes that result in modified structure, behavior, ab-
straction & encapsulation, and inheritance & polymorphism of program’s source
code (which is organized in classes).

Categories of Source Code Changes
Examples Structure Behavior Encapsulation & Inheritance &

Abstraction Polymorphism

add/remove class yes yes yes no

add/remove base/sub class yes yes yes yes

modify method body no yes no no

change method modifier no no yes optional

add/remove class variable yes no yes no

add/remove base/sub class variable yes no yes optional

add/remove class method no yes yes no

add/remove base/sub class method no yes yes optional

Table 1. Examples and Classification of Source Code Changes.

Due to space limitations we only depict a subset of possible source code
changes. Each kind of source code change influences at least one category of our
classification1. The benefit of our classification is a better highlighting of the
approach’s shortcomings concerning the feasibility of source code changes.

3 Evaluation

In this section we evaluate different approaches which fit the topic of runtime
evolution. Unless there is a huge amount of approaches we limit ourselves to these
ones because they can be attached to technical different ideas of approximat-
ing runtime program evolution (e.g., aspect-oriented techniques or script-based
techniques). Despite the technical differences we only evaluate the approach’s
spectrum of runtime evolution. We hold that it is less interesting how runtime
evolution is achieved but rather what the potentials of the approach in terms of
runtime evolution are.

3.1 Javassist

Javassist (Java Programming Assistant) enables Java byte code changes [4, 5].
Using Javassist’s source level API new or changed byte code can be applied to
existing class files without knowledge about the byte code of the classes. The
byte code level API allows direct changes of class file content.

Time of Evolution. Byte code changes can be applied until hire time (Fig-
ure 2). Byte code changes after class loading cannot be applied because of limi-
tations of the Java Virtual Machine (JVM).
1 E.g., ”modify method body” influences {behavior}, ”add/remove class variable” in-

fluences {structure, encapsulation & abstraction}.

53

Fig. 2. Time of Evolution – Javassist.

Types of Evolution. We evaluate Javassist in terms of our classification
(Table 1) even if it aims not source code changes. This is due to the fact that
Java byte code keeps the object-oriented paradigm.

Javassist enables all kinds of code changes2, i.e. it covers all categories of
our classification. This predestinates the tool for computing unanticipated pro-
gram changes. Unfortunately Javassist lacks the complete bandwidth of runtime
evolution.

3.2 AspectWerkz

AspectWerkz [6–8] is a framework for aspect-oriented programming [9, 10] in
Java.

Time of Evolution. AspectWerkz allows program changes until deployment
time (Figure 3). The process of preparing the program for runtime evolution can
only be performed until hire time.

Fig. 3. Time of Evolution – Aspectwerkz.

Types of Evolution. AspectWerkz offers two different concepts for modify-
ing running applications – aspects and mixins – which enables unanticipated pro-
2 E.g., ”add/remove class”, ”modify method body”, ”add/remove class method”, etc.

54

gram changes. Mixins introduce interfaces and their implementations to classes
at hire time. To achieve this, methods (interface methods) and a field (instance of
the interface implementing class) will be introduced into target class (processed
at byte code level). These code changes cover all categories of our classification
(Table 1). The preparation for aspect deployment is processed at byte code level
and results in modified method bodies. Aspects can be added or removed to
(from) prepared program statements at deployment time.

AspectWerkz offers a lot of options to apply program changes at runtime
based on aspects and mixins. Unfortunately the aspect deployment must be
prepared until hire time. For that reason AspectWerkz does not provide the
complete bandwidth of runtime evolution.

3.3 The Bean Scripting Framework – Java and JRuby in Concert

The Bean Scripting Framework (BSF) enables integration of scripting languages
like JRuby3 into Java programs [12]. The application is made up of the Java part
(JP) and the JRuby part (SP). The interaction between the JP and the SP is
controlled by the BSFManager which handles the scripting engine of JRuby.
The BSFManager manages the execution of JRuby scripts and the interchange
of object references4 among the JP and the SP of the application.

Fig. 4. Time of Evolution – Java and JRuby.

Time of Evolution. The combination of Java and JRuby enables program
changes until deployment time (Figure 4). At build time it is terminated what
is static (JP) and what is changeable (SP) in the application.

Types of Evolution. Java classes defined within JRuby scripts can be re-
defined at deployment time. This influences all categories of source code changes
(Table 1). Modifications can be applied to existing instances of the redefined
class, i.e. unanticipated program changes are possible.
3 Java implementation of scripting language Ruby[11]
4 JRuby interpreter can execute scripts which contain Java source code.

55

Summarized, this approach covers all categories of our classification and en-
ables program evolution until deployment time. This results from the runtime
interpreter of JRuby.

4 Conclusion

In this paper we characterized runtime evolution of programs. We identified two
essential properties of runtime program evolution – time of evolution and types
of evolution.

Time of Evolution
Approaches

Build Time Hire Time Deployment Time

Javassist X X –

AspectWerkz X X X

Java and JRuby in Concert X X X

Table 2. Summary - Time of Evolution.

We reason that the combination of Java and scripting language JRuby us-
ing the Bean Scripting Framework offers the most suitable options for enabling
runtime program evolution. JRuby scripts are interpreted and enable all kinds
of program changes until deployment time (see Table 2). Nevertheless, because
of the overhead of script interpretation at program’s runtime this approach is
not appropriate to performance-critical use cases. Thus we need new approaches
which enable runtime program evolution, as offered by interpreted languages,
for compiled languages like Java and C++.

References

1. L. Erlikh: Leveraging Legacy System Dollars for E-Business. IT Professional (2000)
2. J. Moad: Maintaining the competitive edge. DATAMATION (1990)
3. J. Gustavsson and U. Assmann: A Classification of Runtime Software Changes.

In: Proceedings of the First International Workshop on Unanticipated Software
Evolution (USE). (2002)

4. S. Chiba and M. Nishizawa: An Easy-to-Use Toolkit for Efficient Java Bytecode
Translators. In: Proceedings of the second International Conference on Generative
Programming and Component Engineering (GPCE). (2003)

5. S. Chiba: Load-Time Structural Reflection in Java. Lecture Notes in Computer
Science (2000)

6. A. Vasseur: Dynamic AOP and Runtime Weaving for Java – How does As-
pectWerkz Address It? In: DAW: Dynamic Aspects Workshop. (2004)

7. J. Bonér: AspectWerkz – dynamic AOP for Java. Invited talk at 3rd International
Conference on Aspect-Oriented Software Development (AOSD). (2004)

56

8. J. Bonér: What are the key issues for commercial AOP use: how does AspectWerkz
address them? In: Proceedings of the 3rd International Conference on Aspect-
Oriented Software Development (AOSD). (2004)

9. G. Kiczales and J. Lamping and A. Mendhekar and C. Maeda, C.V. Lopes and
J.-M. Loingtier and J. Irwin: Aspect-Oriented Programming. In: Proceedings of
the European Conference on Object-Oriented Programming (ECOOP). (1997)

10. K. Czarnecki and U. Eisenecker: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley (2000)

11. D. Thomas and C. Fowler and A. Hunt: Programming Ruby: The Pragmatic
Programmers’ Guide, Second Edition. Pragmatic Bookshelf (2004)

12. V.J. Orlikowski: An Introduction to the Bean Scripting Framework. Presented at
Conference ApacheCon US. (2002)

57

58

Aspect-based Introspection and
Change Analysis for Evolving Programs

Kevin Hoffman, Murali Krishna Ramanathan,
Patrick Eugster, and Suresh Jagannathan

Purdue University, 305 N. University St., West Lafayette, IN 47907, USA
{kjhoffma,rmk,peugster,suresh}@cs.purdue.edu

Abstract. Challenges arise in discovering, managing, and testing the
impact of changes made to evolving software. These challenges are mag-
nified in software systems that evolve while running, because the new
functionality is piece-wise introduced into a live program with prior state
produced by earlier component versions. If new functionality introduced
into a live system induces bugs, it can be extremely difficult to analyze
exactly which differences led to the incorrect behavior. In order to help
programmers plan for evolution, understand the impact of specific evolu-
tionary steps, and to diagnose evolution gone wrong, herein we propose
combining the benefits of Aspect-Oriented Programming and reflection
with impact analysis techniques from the OO and software engineering
disciplines. We contribute a tool that assists with the deployment of new
code to evolving software that gives insight as to precisely the behav-
ioral changes between the new code and the code it is replacing within
the running system. We conclude by considering the challenges of im-
plementing and deploying such a tool and outline our plans for future
research and evaluation.

1 Introduction

Evolving software systems are becoming ever more prevalant and important,
especially considering the rise of highly-available service-oriented architectures.
The rate of change of software systems has been accelerated by deployment of
web-based applications, which are expected to run without interruption and with
full reliability, notwithstanding their high rate of change and evolution.

The challenges caused by combining high-availability and rapid evolution in
the same system are daunting. Techniques and tools to mitigate and overcome
such challenges is a topic of intense research.

One such challenge linked to rapidly evolving software is the problem of de-
termining the impact of specific changes to source code – how will these changes
propagate and influence the rest of the system? This question is well-known and
well-studied in the literature [1–4]. Techniques have emerged for answering this
question with meaningful precision for software that does not change at runtime.

One such class of techniques is known as dynamic impact analysis, which
strives to improve accuracy over the static analysis of source code by employing

59

code instrumentation and post-mortem analysis. Code is instrumented to gen-
erate trace data at runtime, both versions of the program are then run through
one or more test cases, and finally these traces are compared and analyzed in
order to infer the impact of the changes with as much precision as possible.

However, in their present state these techniques are difficult to apply to
systems that evolve at runtime. While they can be used to understand how two
versions differ across some common test cases, they cannot currently be used
to discover the influence of new code on the live system where the new code is
influenced by the behavior and state of the old code. Another challenge added
by live evolution is that there is no beginning or end to the program where traces
are typically endpointed, so it is difficult to define endpoints without scattering
code or tags throughout the target program.

The contributions of this paper are as follows: First, we present how to com-
bine aspect-oriented programming and reflection to transparently instrument
programs while providing flexibility in how this instrumentation is applied and
when it is active. Second, we enhance analysis techniques first introduced in [5]
that allow the programmer to analyze the traces to achieve precise change anal-
ysis. Third, we evaluate the performance overhead of using our tool in long
running (evolving) systems by measuring the performance impact both when
tracing is and is not active.

2 Technique Overview

The general strategy of our approach is to first use aspects to instrument pro-
grams so that they generate ”interesting” trace data (using the AspectJ 5 load
time weaver), and then to analyze these traces (collected from multiple versions
(or evolutionary steps) of the program) in order to determine which changes in
the source code were responsible for the exhibited changes in program behavior.

We build on the insights and techniques of the Sieve [5] dynamic impact
analysis system, but adapt it for object-oriented programming, change the nature
of the trace data, and add flexibility and power stemming from implementing
the instrumentation via AOP.

2.1 Trace Generation

The traces generated by the instrumentation approximate a complete program
trace – a complete, sequential log of every low-level instruction executed (kept
on a per thread basis) – in the same way that static analyses approximate the
run-time behavior of a program. Greater accuracy over static analysis can be
achieved because the traces have access to actual program state and control flow
as the program executes. However, while capturing a complete program trace
would be feasible (e.g. by modifying the JVM) and would preserve all information
for the analysis, the size of these traces would quickly become challenging for
long-running programs and would also cause analysis to be inefficient or even
intractable.

60

To approximate a complete program trace, we use the following strategy:
First, the program trace is endpointed so that only pieces of the execution trace
are instrumented and recorded. For example, it could use the entrance and exit
to a certain high level method as one set of endpoints. Each segment of the
complete program trace captured between endpoints is called a trace segment.

For each trace segment several individual traces (representing an approxima-
tion of what happened over time) are generated over the lifetime of the trace
segment. One individual trace, termed a trace point, is captured for each unique
(method, truncated call stack) pair. The same trace point may be active many
times over the course of the trace segment (as the same method with the same
truncated call stack can be called many times).

As trace events (field accesses and method calls) are captured by the in-
strumentation, the code first determines the current trace point (creating the
individual trace for that trace point if it is the first time entering that trace
point) and then adds to the individual trace in the following way. First, infor-
mation about the event is fed into a hashing function, and this hash value is
used as a key into the individual trace (represented using an ordered hash ta-
ble). If the individual trace does not contain the hash key, then the event is
appended to the end of the trace along with a counter initialized to 0. It also
includes relevant information about the event such as the source code location
corresponding to that event. If the trace already contained the hash key, then
the counter associated with that hash key is incremented.

In this way the trace approximates the sequential execution of events during
all executions occurring in that trace point during the current trace segment.
The use of event hashing and not storing more than one trace entry per hash
allows traces to remain small, while the counter helps to model which branches
were taken and how many loop iterations were executed.

2.2 Trace Analysis

The analysis of the trace data builds on the technique introduced by the Sieve [5]
system.

To understand what has changed between different versions of the (running)
program, the following procedure is used: First, one or more trace segments are
captured on both the old and new versions of the running program. Next, the
program identifies for each individual trace in the new version the corresponding
individual trace in the old program. Currently the tool uses method name and
signature to pair up traces, but more complex heuristics would be needed if
method signatures or class names change between versions (as might be the case
with an evolving system).

It then computes the minimal differences in execution between each new
and old trace point by computing the longest common subsequence algorithm.
Each individual trace is represented as a sequence of trace events, so the longest
common subsequence between two traces represents the execution events that
occurred in both versions of the program. The LCS can then be used to determine

61

the minimal set of execution events that either did not occur in the new version
or were new to the new version.

The result of the analysis can be used by developers to understand the pre-
cise effects new component versions have upon program execution. If the input
traces were complete program traces, then the results of the analysis would
present precisely the points in both time and code at which the behavior of the
new version diverged from what the old version would have done. In the trace
approximations described above all temporal notions of computation are not
recorded (aside from capturing the sequence in which execution events are first
encountered within a given trace point), so the results of the analysis represent
the precise points in the source code where the execution differed, but do not
provide insight into the time of the divergence or how differences observed in
different trace points can be ordered with respect to each other.

The traces can be enhanced in several ways to increase the precision of the
analysis. First, the definition of a trace point can be extended from (method,
truncated call stack) to include additional context, such as actual values of pa-
rameters or the number of times the method was called (allowing the capture of
different traces for both the first N and last M executions for any given (method,
truncated call stack)). Due to our use of aspects and reflection to implement trace
generation, all of the above enhancements could be parameterized and adjusted
at run-time – an important factor for long running, evolving systems. This pa-
rameterization could be used to increase the accuracy of the generated traces
where it is anticipated that the increased accuracy is needed, while still avoiding
full generation of the complete program trace (unless this is desired as indicated
by the parameters).

2.3 Example

We present a small example in this section to illustrate how the tracing process
works. Consider the two versions of some program shown in Figure 1. The only
difference between the two versions is on line 9. For this example a trace point
is identified solely by the method name, a location solely identified by a line
number, the trace event data includes the values of the parameters, and the
hash of a trace event is the hash of the method name and parameter values. We
define one trace endpoint using the pointcut execution(void C.m1(..)).

Figure 2 shows the individual traces that would be generated for the trace
segment that became active as part of the C.m1 method execution. Each line
in a trace consists of the following format: hash.counter: line: event data.
This example exhibits many illustrative points: First, note that the execution
between the two versions would first begin to differ at line 9 – in version A the
call to m3 is made on line 10 and then again on line 12, whereas in version B this
call is only made on line 12. This behavior is exhibited by the traces. The trace
for C.m2 for version A shows m3 was called before println("p4") and that it
was called one more time sometime after that. The trace for C.m2 for version B
shows m3 was called after println("p4") and that it was not called again after

62

(Version A) (Version B)

1) class C { 1) class C {

2) void m1(){ 2) void m1(){

3) out.println("p1"); 3) out.println("p1");

4) m2(true); 4) m2(true);

5) out.println("p2"); 5) out.println("p2");

6) } 6) }

7) void m2(boolean b){ 7) void m2(boolean b){

8) out.println("p3"); 8) out.println("p3");

9) if (b) 9) if (!b)

10) m3(); 10) m3();

11) out.println("p4"); 11) out.println("p4");

12) m3(); 12) m3();

13) m4(); 13) m4();

14) } 14) }

15) void m3(){ 15) void m3(){

16) out.println("p5"); 16) out.println("p5");

17) } 17) }

18) void m4(){} 18) void m4(){}

19) } 19) }

Fig. 1. Two versions of a program to be traced

======== C.m1.txt ====== ======== C.m1.txt ======

81a9db.1: 3: println p1 81a9db.1: 3: println p1

fc3511.1: 4: m2 true fc3511.1: 4: m2 true

d8247b.1: 5: println p2 d8247b.1: 5: println p2

======== C.m2.txt ====== ======== C.m2.txt ======

56b1b1.1: 8: println p3 56b1b1.1: 8: println p3

5b0e30.2: 10: m3 7f4bdb.1: 11: println p4

7f4bdb.1: 11: println p4 5b0e30.1: 12: m3

42eea0.1: 13: m4 42eea0.1: 13: m4

======== C.m3.txt ====== ======== C.m3.txt ======

5533c9.2: 16: println p5 5533c9.1: 16: println p5

Fig. 2. Individual traces generated for example program in Figure 1

63

that. Second, when the LCS is generated between the two versions it would show
that the execution diverged after line 8 and then converged back at line 13.

Adjusting the definition of trace point identity and the inputs used in the
hash for events, and also allowing timestamps to be used allows programmers to
explore changes with varying levels of accuracy and efficiency.

3 Implementation

This section describes the role of aspect-oriented programming and reflection in
implementing our techniques.

3.1 Tool Overview

The tool is composed of a collection of instrumentation aspects that generate
trace data and a Java analysis program to extract meaning from the trace data.
To run a program using the instrumentation framework a script is used in the
place of the java command that invokes the AspectJ 5 load-time weaver and
configures the instrumentation aspects according to parameters passed on the
command line. Parameters can fine tune exactly which parts of the program are
instrumented and are also used to adjust the accuracy of trace data (allowing
tradeoffs to be made between performance and accuracy).

3.2 Aspectized Instrumentation

The generation of trace data is composed of four components: call stack tracking,
trace event tracking, trace generation, and trace persistence.

For each thread an object representing the current threads call stack is main-
tained by an aspect. This aspect intercepts all method calls within the scope of
interest using before and after advice and adds to or removes from the thread’s
call stack object. Each call stack entry records the information required to iden-
tify the current trace point (method name, signature, and possibly argument
values). An aspect is used instead of a Java exception object to obtain the cur-
rent call stack both because our technique is faster (the call stack is updated
only as it is changed, instead of rebuilding it every time it is needed) and it
allows us to gather more information about the call stack (such as the values of
parameters to methods).

Events that are of interest to the trace (field accesses and method calls) are
modeled by using a pointcut. This pointcut uses an if primitive pointcut so
that it does not match when there is no active trace segment. A before advice
uses the above pointcut to execute trace generation logic whenever an event of
interest is about to be executed.

The logic to generate the traces works in the following fashion. When an
event of interest is about to execute it generates the current trace point using
the current call stack for the current thread and the individual trace associated
with that trace point is looked up (or created if it does not exist). The data for

64

the event is collected through reflection, and then a portion of this data is put
through a hash function to generate a key. If the key already exists in the hash
table that trace entry is ‘revisited’ to update its counter and timestamps. If the
key does not exist, a new trace entry is added to the hash table (the hash table
also records the order of the insertions to capture an approximate sequence of
execution within the trace point).

When the end of the trace segment is reached the trace persistence component
writes all trace data generated during the trace segment into a series of files and
then deactivates tracing. One file is generated for each individual trace with the
trace entries written in the order in which they were inserted into the hash table.
Each trace entry written includes information relevant to the analysis, including
the original source location responsible for that execution event. This persistence
logic can easily be offloaded onto a background thread so as not to block the
progress of the application thread.

3.3 Use of AspectJ Reflection

Reflection is used in the implementation primarily in two places. First, the call
stack builder uses reflection features of thisJoinPoint to extract the source
location of method calls. The call stack builder also uses the new reflection
features in AspectJ 5 to determine whether or not the method is actually part
of an aspect, which can be useful in the analysis stage to analyze the change in
how aspects advised the base code between versions of a program.

Second, reflection is used in the advice that advises trace events to capture
dynamic information about the event (e.g. values of method parameters) and
also for supporting more complex definitions of trace points.

3.4 Trace Endpointing

Traditionally, the endpoints of a program trace are defined to be the start and
end of a program. However, this is not useful for long running, evolving systems,
so a means of defining endpoints with finer granularity is needed. Because as-
pects are used to perform the instrumentation, the full power of the AspectJ
quantization model is available to the programmer in describing where trace
segments should begin and end.

When the program is started, abstract pointcuts indicating the (possible)
places where trace segments begin and end can be instantiated (by using an
XML file which is used by the load-time weaver). The cflow and cflowbelow
primitive pointcuts are then used with the above pointcuts to capture precisely
the places where a trace segment begins and ends. The programmer can use
dynamic primitive pointcuts in the endpoint pointcuts (e.g. if) so that tracing
is only activated if certain boolean variables are set. More complex activation
logic could be added if required (similar to how logging frameworks allow classes
of log messages to be turned on or off) at the cost of higher performance overhead.

Using pointcuts to implement endpointing allows for great flexibility in de-
ciding the scope and precision of tracing operations. The tool could also be

65

enhanced to allow for more than one trace segment per thread to be active at
one time, although this would affect performance (whether or not the impact
would be significant is yet to be determined).

3.5 Analysis of Trace Data

The analysis is implemented as a Java program that accepts as input the loca-
tion of two directories, where each directory contains the results from one trace
segment (for one particular version of the program). The analysis program also
accepts a mapping that tells it how to correlate trace points in one version with
the trace points in the other version (by default, this mapping is the identity
function).

For each trace point it computes the longest common subsequence of trace
events, using the hash value as a sequence element. The output is similar to
the common diff tool in that it shows which trace events were exhibited in
the old version but not the not version and vice versa. The tool assists the user
by parsing the rest of the trace data associated with each trace event (source
code information) and displays this decoded information to the user. In this
way the user can see the source locations where the executions differed. If trace
points were defined using a larger context and trace data contained temporal
information, as discussed in section 2, then the resulting output would also give
insight into when the new version first diverged from the old version in addition
to information about where it did so.

4 Discussion

In this section we discuss how the techniques described in this paper relate to
software evolution and also discuss the performance impact of using these tools
in deployed systems.

4.1 Benefits for Software Evolution

The techniques presented in this paper are beneficial for evolving software sys-
tems in the following ways:

1. Java software can be transparently instrumented and the behavioral dif-
ferences between different versions of objects (or similar objects) can be
precisely observed.

2. The use of pointcuts to describe trace endpoints gives a great deal of flex-
ibility in dynamically deciding when and what to trace through the use of
dynamic pointcuts, while still reaping optimizations made by the AspectJ
weaver. For example, before upgrading the evolving system tracing could be
turned on for some built in test cases, and then afterwards the traces gener-
ated using the new classes could be compared to the old traces to understand
exactly what went wrong (or right).

66

3. AspectJ pointcuts allow developers to selectively specify what should be
instrumented (improving efficiency) while still being robust to enhancements
and changes to the type system in the future.

We anticipate collaboration with others in this field to further learn how these
ideas can be applied.

4.2 Performance Implications

In order for these techinques to be most useful for evolving software they must
be deployed on production systems. Production systems are much more sensitive
to effects on performance, so it is important to understand the performance costs
associated with the instrumentation and tracing.

Even when the instrumentation and tracing logic is woven into a program,
there are different levels of tracing activity with different corresponding perfor-
mance costs. The first level is where the code has been instrumented, but there
is no active trace segment in any thread. In this level the performance cost is
due to the dynamic if pointcut designator that checks before every method call
the value of a boolean flag (in this level, the flag is false, and further logic is
not executed). The next level is where there are active trace segments on other
threads, but not in the current thread. In this situation the global tracing flag is
true (meaning tracing is active somewhere), but the dynamic if pointcut des-
ignator has to also then check a hash table to see whether or not there is an
active trace segment for the current thread (in this case, there is not). Finally,
the highest level is where there is an active trace segment for the current thread,
so trace data is being generated for every method call (or field access if desired).

We have designed and run two benchmarks to quantitatively understand
the performance costs associated with each level of activity. The first one is
a microbenchmark that is a program consisting almost exclusively of nested
method calls (there are a few loops and addition operations, but the primary
computation of the program is calling methods). This microbenchmark was de-
signed to exhibit the actual timing overheads associated with the differing levels
of instrumentation. The second benchmark is the Java Linpack benchmark [6],
which heavily exercises the floating point processor while also involving a large
number of method calls (over 100 million).The goal of this benchmark is to see
how the overall performance of a computationally intensive program (involv-
ing a large number of method calls) is affected after it has been instrumented.
Both of these benchmarks represent worst-case or near worst case scenarios for
the instrumentation; applications in which the actual number of method calls
is relatively small (e.g. applications built on middleware) will be affected much
less.

All benchmark tests were performed on a machine with a 2.33 Ghz Intel core
2 Duo procesor, 2 GB RAM, running OS X. The programs were compiled and
run using Sun’s Java 1.5.0.07 (Server Hotspot VM) and AspectJ 1.5.3. Before
the tests were run all applications were closed and the system left until it entered

67

Fig. 3. Microbenchmark Results

an idle state. All timings computed do not include the time to load the Java VM
or perform weaving. All numbers presented are averages over three runs.

The results of the method calls microbenchmark are presented in Figure 3
showing the average method call times. In this test over seven million method
calls were made under each of the different scenarios and then the average time to
execute a method call was computed by dividing the wall clock time by the exact
number of calls made. (For some of the faster tests hundreds of millions of method
calls were made to ensure a stable result.) The results for the Lynpack benchmark
as presented in Figure 4 show how much slower instrumented programs ran
compared to the original programs.

Applications in production would be in the call stack only (not active) level
most of the time. At this level the overhead due to code instrumention is 6.1
nanoseconds per method call. For almost all applications this overhead should
be negligible. Some computationally intensive programs that make heavy use
of method calls in their innermost loops may experience a slowdown similar to
Lynpack (9%).

Given that the duration of trace segments should be relatively small (be-
ing inactive most of the time – becoming active before and after components
change), especially compared to the duration during which there are no active
trace segments, the higher overhead present during tracing should not pose a sig-
nificant obstacle to adoption. Additionally, if performance is an issue, load time
parameters can cause the instrumentation to not be applied to certain sections
of code such that there is no overhead for these regions of code.

Although our current system has much higher overhead than previously pro-
posed techniques while tracing is active, performance when tracing is not active
is much better. For example, path profiling [7] imposes on average an overhead

68

Fig. 4. Lynpack Benchmark Results

of 31% to 70% [8], whereas when tracing is not active our system imposes an
average overhead of 9%. If tracing is only active for 1% of the time, then the
average overhead of our approach becomes 27%. We also note that while path
profiling captures execution counts for all acyclic execution paths in the program
it does not record the relative order in which these paths were executed. Our
tool is able to approximate this ordering and can thereby determine differences
between traces with greater accuracy.

5 Conclusion

We have presented new techniques for understanding the changes in behavior
of programs as they evolve (while running) over time. These techniques show
promise to assist in planning, monitoring, and diagnosing evolving systems.
There is certainly more to understand relating to the performance of the tech-
nique and how to improve it, but our results so far indicate that the overhead
is an acceptable burden for most applications. Future work involves further de-
veloping and refining the methods for evolving software, applying the technique
to one or more case studies, and developing tool and IDE support for easy inte-
gration into the development process.

References

1. J. Law and G. Rothermel, “Whole program path-based dynamic impact analysis,”
in ICSE 03, 2003, pp. 308–318.

2. T. Apiwattanapong, A. Orso, and M. J. Harrold, “Efficient and precise dynamic
impact analysis using execute-after sequences,” in ICSE 05, 2005, pp. 432–441.

69

3. A. Orso, T. Apiwattanapong, and M. J. Harrold, “Leveraging field data for impact
analysis and regression testing,” in ESEC/FSE-11, 2003, pp. 128–137.

4. X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chianti: a tool for change
impact analysis of java programs,” in OOPSLA 04, 2004, pp. 432–448.

5. M. K. Ramanathan, A. Grama, and S. Jagannathan, “Sieve: A tool for automatically
detecting variations across program versions,” in ASE 2006, September 2006.

6. J. Dongarra, R. Wade, and P. McMahan, “Linpack benchmark – Java version,”
2007, http://www.netlib.org/benchmark/linpackjava/.

7. T. Ball and J. R. Larus, “Efficient path profiling,” in MICRO, December 1996, pp.
46–57.

8. G. Ammons, T. Ball, and J. R. Larus, “Exploiting hardware performance counters
with flow and context sensitive profiling,” SIGPLAN Notices, vol. 32, no. 5, pp.
85–96, 1997.

70

Morphing Software for Easier Evolution

Shan Shan Huang1,2, and Yannis Smaragdakis2

1 Georgia Institute of Technology, College of Computing, ssh@cc.gatech.edu
2 University of Oregon, Department of Computer and Information Sciences

yannis@cs.uoregon.edu

1 Introduction

One of the biggest challenges in software evolution is maintaining the relation-
ships between existing program structures. Changing a program component (e.g.,
a class, interface, or method) typically requires changes in multiple other com-
ponents whose structure or meaning depend on the changed one. The root cause
of the problem is redundancy due to lack of expressiveness in programming lan-
guages: Extra dependencies exist only because there is no easy way to model one
program component after another, so that changes to the latter are automati-
cally reflected in the former. For example, in the Enterprise Java Bean (EJB)
standard, local and remote stub interfaces must mirror the bean class structure
exactly. A change in the bean interface must be propagated to the stub inter-
faces, as well. Tools and methods have been developed to support writing code
that is immune to changes in program structure (e.g., [10, 11]). But these tools
either require separate declarations of a program’s structural properties (e.g.,
class dictionaries in [11]), or use potentially unsafe runtime reflection [10]. Fur-
thermore, these tools focus on adapting code, and not the static structure of a
class or interface, to evolving program structure.1

Another obstacle in software evolution is the extensibility of software compo-
nents, particularly when source code is unavailable. Aspect Oriented Program-
ming (AOP) [9] and its flagship tools, such as AspectJ [8] provide a solution
approach. AspectJ allows a programmer to extend a software component by
specifying extra code to be executed, or even change the component’s original
semantics entirely by circumventing the execution of original code, and pro-
vide new code to execute in its place. AspectJ is a powerful tool, but often
has to sacrifice either discipline or expressiveness. For example, AspectJ aspects
are strongly tied to the components they apply to—there is no notion of type-
checking an aspect separately from the application where it is used. This means
that generic AspectJ aspects (i.e., aspects that are specified so that they can
be later applied to multiple, but yet unknown, components) are limited in what
they can express. For example, AspectJ cannot express intercepting all calls to
the methods of one class, and forwarding them to methods of another class, us-
ing the intercepted arguments: the aspect to do so needs to be custom-written

1 Tools have been developed to specifically target generating EJB stubs [5] so that
consistency between the bean class and its stubs is managed automatically. But this
is a solution to one specific problem, and not generally applicable.

71

for the specific classes, methods, and arguments it will affect. AspectJ also does
not provide explicit means of controlling aspect application. For example, the
order of aspect composition may affect behavior in ways unanticipated by the
developers.

With these two obstacles in mind, we recently introduced a language feature
that we call “morphing” [7]. Morphing supports a powerful technique for software
evolution, and it overcomes many of the shortcomings of existing solutions. We
discuss morphing through MJ—a reference language that demonstrates what we
consider the desired expressiveness and safety features of an advanced morphing
language. MJ morphing can express highly general object-oriented components
(i.e., generic classes) whose exact members are not known until the component is
parameterized with concrete types. For a simple example, consider the following
MJ class, implementing a standard “logging” extension:

class MethodLogger<class X> extends X {

<Y*>[meth]for(public int meth (Y) : X.methods)

int meth (Y a) {

int i = super.meth(a);

System.out.println("Returned: " + i);

return i;

}

}

MJ allows class MethodLogger to be declared as a subclass of its type param-
eter, X. The body of MethodLogger is defined by static iteration (using the for

statement—the central morphing keyword) over all methods of X that match the
pattern public int meth(Y). Y and meth are pattern variables, matching any type
and method name, respectively. Additionally, the * symbol following the decla-
ration of Y indicates that Y matches any number of types (including zero). That
is, the pattern matches all public methods that return int. The pattern vari-
ables are used in the declaration of MethodLogger’s methods: for each method of
the type parameter X, MethodLogger declares a method with the same name and
signature. (This does not have to be the case, as shown later.) Thus, the exact
methods of class MethodLogger are not determined until it is type-instantiated.
For instance, MethodLogger<java.io.File> has methods compareTo and hashCode:
the only int-returning methods of java.io.File and its superclasses.

MJ morphing supports disciplined software evolution in the following ways:

– MJ allows a class’s members to mirror those in another class, e.g., one of its
type parameters. The structure of an MJ generic class adapts automatically
to the evolving interfaces of its type parameters. (MJ’s for construct can
also be used in declaring statements. Thus, MJ can be used to adapt code
to changing program structures, as well.)

– MJ generic classes support modular type checking—a generic class is type-
checked independently of its type-instantiations, and errors are detected if
they can occur with any possible type parameter. This is an invaluable
property for generic code: it prevents errors that only appear for some type
parameters, which the author of the generic class may not have predicted.

72

– MJ allows programmers to use both a “transformed” version of a class and
the original class at will. For example, a programmer may refer to both
the original java.io.File and its logged version MethodLogger<java.io.File>

within the same piece of code.
– Order of composition is explicit in MJ: given two MJ classes, adding two

pieces of functionality, e.g., logging through MethodLogger and synchroniza-
tion through MethodSynchronizer, applying logger before synchronizer is sim-
ply, MethodSynchronizer<MethodLogger<java.io.File>>.

In addition to the above properties, MJ differs from existing “reflective” pro-
gram pattern matching and transformation tools [2–4, 12] by making reflective
transformation functionality a natural extension of Java generics. For instance,
our above example class MethodLogger appears to the programmer as a regular
class, rather than as a separate kind of entity, such as a “transformation”. Using
a generic class is a matter of simple type-instantiation, which produces a regular
Java class, such as MethodLogger<java.io.File>.

We next elaborate on how MJ morphing supports adaptation to evolving
program structures and its modular type safety properties through examples.

2 Adapting Structure to Changing Structures

The structure of an MJ generic class can evolve consistently with the structure
of its type parameter. This property allows writing feature extensions and adap-
tations that are inherently evolvable. We illustrate the benefits of this property
using a common design pattern: wrapper [6]. A wrapper class declares the exact
same methods as the class it wraps. It delegates each method call to the wrapped
class, adding functionality before or after the delegation. The MethodLogger class
of the previous section is a classic wrapper.

For a real world exposition of the wrapper pattern, consider the
class java.util.Collections, a utility class provided by the Java Collec-
tions Framework (JCF) [1]—the standard Java data structures library.
java.util.Collections provides a number of methods that take a particular kind
of data structure, and return that data structure enhanced with some additional
functionality. For example, the method synchronizedCollection(Collection<E>

c) takes a Collection c, and returns a synchronized version of that
collection. The implementation of this method returns an instance of
the wrapper class SynchronizedCollection<E>. For each method in the
Collection interface, SynchronizedCollection defines a method with the ex-
act same signature. The bodies for these methods all first synchronize
on a mutex, and then delegate the call to the underlying Collection

object. java.util.Collections offers similar methods that return synchro-
nized versions of other kinds of data structures: synchronizedSet(Set<E>),
synchronizedSortedSet(SortedSet<E>), synchronizedList(List<E>), etc. Each
of these methods, in turn, requires its own wrapper class definition:
SynchronizedSet<E>, SynchronizedSortedSet<E>, SynchronizedList<E>, etc.

73

Note that these wrapper class definitions are tightly coupled with the inter-
face of the data structures they are wrapping. If the interface of Collection<E>

changes (e.g., a new method is added, or an existing method is now taking an
extra argument), the class SynchronizedCollection<E> needs to be redefined, as
well. Note also the redundancy at both the class and the method level. At the
class level, all Synchronized* wrapper classes have the same structure, yet one
wrapper class needs to be defined for each data structure to be synchronized. If
the need to synchronize a new data structure arises, then a new wrapper class
needs to be defined. At the method level, all methods within a Synchronized*

class share a highly regular structure: first synchronize on a mutex, then delegate
the call. Yet they still need to be defined individually. Java provides no way to
modularly impose this structure on all methods.

With MJ, however, we can remove such dependency and redundancy, with a
single MJ class:2

public class SynchronizeMe<interface X> implements X {

X x;

Object mutex;

public SynchronizeMe(X x) { this.x = x; mutex = this; }

//For each non-void method in X, declare the following:

<R,A*>[m] for(public R m(A) : X.methods)

public R m (A a) { synchronized(mutex) { return x.m(a); } }

// Similarly for each void-returning method in X

<A*>[m] for(public void m(A) : X.methods)

public void m(A a) { sychronized(mutex) { x.m(a); } }

}

SynchronizeMe decouples the synchronization feature from the interfaces
needing such a feature. Its definition adapts effortlessly to the interfaces it wraps.
There is no need to modify SynchronizeMe when the underlying wrapped inter-
face changes. SynchronizeMe can be instantiated with any interface to provide a
synchronized implementation of that interface, thus replacing all Synchronized*
wrapper classes. Additionally, SynchronizedMe removes method-level redundancy
using a static iteration block to impose the same structure on all methods.

The full version of the above MJ class consists of less than 50 lines of code, re-
placing more than 600 lines of code in the JCF. Similar simplifications can be ob-
tained for other nested classes in java.util.Collections, which account in total
for some 2000 lines of code in the original JCF implementation: UnmodifiableSet,
UnmodifiableList, UnmodifiableMap, etc. are replaced by a single morphed class,
and the same is done for CheckedSet, CheckedList, CheckedMap, etc.

While adding logging or synchronization functionality is doable with AOP
tools such as AspectJ, MJ allows the “morphing” of a wrapper class in much

2 This example implementation uses this as the mutex. A more flexible implemen-
tation could provide a constructor that allows programmers to choose their own
mutex. In fact, this is the strategy adopted in the JCF.

74

more interesting ways. For example, one can declare a MJ class MakeLists<C>

such that, for each single-argument method of its type parameter C, MakeLists<C>
has a method of the same name, but takes a list of the original argument type,
invokes the original method on each element of the list, and returns a list of the
original method’s return values:

class MakeLists<C> {

C c; // wrapped object.

... // constructor initializing c.

<R,A>[m] for(R m (A) : C.methods)

List<R> m (List<A> la) {

ArrayList<R> rlist = new ArrayList<R>();

if (la != null)

for (A a : la) { rlist.add(c.m(a)); }

return rlist;

}

}

This transformation is not expressible using AspectJ. Consider how this func-
tionality can be implemented using plain Java: a MakeListsSomeType class would
have to be declared for every SomeType that we want to have this extension for.
Additionally, if the structure of SomeType changes, e.g., a new single-argument
method is added, or an existing method changes its argument or return types,
MakeListsSomeType would need to be modified to reflect those changes, as well.
In contrast, the MJ generic class MakeLists<C> works for any class C without ad-
vanced planning of which types this extension can be added to. It also morphs
with the structure of each C, without further programmer intervention.

3 Modular Type Checking

For an example of modular type checking, consider the following “buggy” class:

class CallWithMax<class X> extends X {

<Y>[meth]for(public int meth (Y) : X.methods)

int meth(Y a1, Y a2) {

if (a1.compareTo(a2) > 0) return super.meth(a1);

else return super.meth(a2);

}

}

The intent is that class CallWithMax<C>, for some C, imitates the interface
of C for all single-argument methods that return int, yet adds an extra formal
parameter to each method. The corresponding method of C is then called with
the greater of the two arguments passed to CallWithMax<C>. It is easy to define,
use, and deploy such a generic transformation without realizing that it is not
always valid: not all types Y will support the compareTo method. MJ detects
such errors when compiling the above code, independently of instantiation. In

75

this case, the fix is to strengthen the pattern with the constraint <Y extends

Comparable<Y>>:

<Y extends Comparable<Y>>[meth]for(public int meth (Y) : X.methods)

Additionally, the above code has an even more insidious error. The generated
methods in CallWithMax<C> are not guaranteed to correctly override the methods
in its superclass, C. For instance, if C contains two methods, int foo(int) and
String foo(int,int), then the latter will be improperly overridden by the gener-
ated method int foo(int,int) in CallWithMax<C> (which has the same argument
types but an incompatible return type). MJ statically catches this error.

4 A Comparison to AOP

Morphing can be used to address some of the same issues as AOP. To be sure,
morphing only relates to a small but central part of AOP functionality: as-
pect advice of structural program features, such as method before-, after-, and
around-advice. Particularly, the logging and synchronization examples shown in
previous sections are frequent use cases for AOP languages. Thus, it is worth
delineating the similarities and distinct differences between morphing and AOP.
We next compare MJ, the only reference morphing language, to AspectJ [8], a
representative AOP tool for Java.

4.1 How Functionality is Added

Both MJ and AspectJ allow functionalities that cross-cut multiple class defini-
tions to be defined in a modular way. For example, the method logging func-
tionality can be defined in one MJ class, MethodLogger. However, the way such
functionalities are added into a base class definition is one of the main differ-
ences between MJ and AspectJ. With MJ, cross-cutting functionality is added
“into” a base class through explicit parameterization of the morphing class.
The new functionality only exists in the parameterized morphing class, whereas
the definition of the base class itself does not change. For example, parame-
terized morphing class MethodLogger<java.io.File> has the functionality that
all int-returning methods are logged. However, the definition of java.io.File

itself remains unchanged. In AspectJ, an aspect definition states the classes a
functionality should be added to.3 In this way, the new functionality is weaved
with the code of the original class. The program cannot simultaneously use the
separate notions of “original class” and “class with the cross-cutting function-
ality”. One way to view the semantics of AspectJ is as changing the original
class’s definition. For instance, given an AspectJ aspect that adds logging code
to each int-returning method of java.io.File, the class java.io.File itself can
be thought of as changed after aspect application. Indeed this also happens to
be the way current AspectJ compilers implement the semantics of weaving.

3 In the case of generic aspects in AspectJ 5, the affected classes can be specified
through parameterization of the aspect.

76

We view explicit parameterization in MJ as an important feature for two
reasons. First, the ability to leave the original class definition untouched is an
important one. For example, a programmer should be able to use both syn-
chronized and unsynchronized versions of a data structure in the same program,
depending on his needs. This is indeed the case with the MJ class SynchronizeMe,
shown in Section 2. With AspectJ, however, the programmer must choose one
or the other. AOP purists may hold the view that cross-cutting functionality
enhancements, by definition, should be applied to all classes that need them.
But as shown through the synchronization example, this is a very rigid require-
ment. Furthermore, if indeed all instantiations of a class should have a particu-
lar cross-cutting functionality, it should be possible to extend MJ with a global
search-and-replace tool, replacing all instances of a class with the explicitly pa-
rameterized version of a morphing class. This is part of future work, however.
Our current research focuses on the fundamental core of morphing, and we ex-
pect that usability enhancements will come later.

Secondly, explicit parameterization provides a way to clearly document and
control the semantics of a program. This is particularly true when multiple,
separately-defined functionality enhancements need to be added to a class. One
of the much researched topics in AOP is aspect interaction. When one defines
an aspect in AspectJ, there is no good way to specify the order of its application
relative to all other aspects, some of which may be unknown to the aspect de-
veloper. Furthermore, an addition of another aspect unknown to the developer
can change the program semantics in unexpected ways. This is an undesirable
characteristic in terms of modularity. MJ, on the other hand, allows explicit con-
trol of functionality addition through instantiation order. The type-instantiation
order gives a clear meaning as to where and how functionality is added.

4.2 Modular Type Safety and Trade-offs in Expressiveness

The other main difference between MJ and AspectJ is MJ’s guarantee of modular
type safety. In order to make such guarantees, we limited our attention to some
specific features instead of adding maximum expressiveness to the language. Pat-
tern matching in MJ is simple and high level by design. A programmer can only
inspect classes at the level of method and field signatures: MJ pattern matching
applies to reflection-level structural elements of a type. In contrast, AspectJ al-
lows a programmer to match on a program’s dynamic execution characteristics,
using keywords such as cflow (for control flow) and cflowbelow in pointcuts.

Though MJ limits its pattern matching to the type signature level, it does al-
low matching using subtype-based semantic conditions, in contrast to the purely
syntactic matching of signatures AspectJ offers. For instance, using pattern-
matching type variables, MJ allows one to express a pattern that matches all
methods that return some subtype of java.lang.Comparable. This is a pattern
not expressible through AspectJ. The combination of pattern matching and the
static for construct in MJ provides a controlled but useful kind of programma-
bility in defining where a certain functionality should be introduced.

77

Although we make comparisions only to AspectJ, the arguments in this sec-
tion generalize to other AOP tools, as well. AspectJ is representative in the way
it applies aspects, and is perhaps the most expressive aspect language today.

5 Future Work: When Plain Morphing Isn’t Enough

We have demonstrated through examples that morphing with MJ is particularly
useful for defining classes whose structure must mirror the structure of another
class or interface. However, there are some useful cases that MJ, with just pattern
matching and static iteration, cannot express in a modularly type safe way. For
example, it is often the case that each field in a class has its own getter and
setter methods. These getter and setter methods must be manually defined by
the developer. This seems to be the perfect use-case for morphing. We ought to
be able to define a morphing class that defines a getter and a setter method for
each field in its type parameter:

public class AddGetterSetter<class C> extends C {

<F>[f] for(F f : C.fields)

public F get#f () { return f; }

<F>[f] for(F f : C.fields)

public void set#f (F newF) { f = newF; }

}

Note that AddGetterSetter uses the MJ language construct #, which con-
catenates a constant prefix to a pattern matching name variable. For each field
SomeField in C, AddGetterSetter<C> declares a getter method, getSomeField, and
a setter method, setSomeField. However, this class is not modularly type safe.
We cannot establish that the names of the methods being declared, getSomeField
and setSomeField, whatever SomeField may be, do not conflict with methods in
the superclass C. For example, AddGetterSetter<Foo> would not be a well-typed
class if Foo is defined as follows:

public class Foo {

int up;

public int setup (int i) { ... }

}

AddGetterSetter<Foo> contains the method void setup(int), which incor-
rectly overrides the method int setup(int) in its superclass Foo: setup in
AddGetterSetter<Foo> has the same argument type as setup in Foo, but a non-
covariant return type.

One possible way to express such functionality while keeping modular type
safety is to put an additional condition on each element in the static iteration.
We need to be able to express that we only want to iterate over those fields f

of C for which a set#f (or get#f) method does not already exist in C itself. We

78

are currently considering an extension to the pattern language. For example, we
could change the static iteration block defining the setter method to:

<F>[f] for(F f : C.fields;

no set#f(F) : C.methods)

public void set#f (F newF) { f = newF; }

Note the extra clause: no set#f(F) : C.methods. This clause serves as the
extra conditional needed to ensure that no conflicting method already exists in
C.

This addition to MJ’s pattern matching language might seem simple and
innocuous at first, but the combination of iteration along with conditionals on
types and their structures can easily yield undecidable type systems. We must
take care to restrict the conditionals so that our type checker can still provide
useful feedback to the programmers. Striking this balance between the need for
this additional expressiveness and the tractability of the type system is our future
focus.

6 Conclusion

Overall, we consider MJ and the idea of morphing to be a significant step forward
in supporting software evolution. Morphing can be viewed as an aspect-oriented
technique, allowing the extension and adaptation of existing components, and
enabling a single enhancement to affect multiple code sites (e.g., all methods
of a class, regardless of name). Yet morphing can perhaps be seen as a bridge
between AOP and generic programming. Morphing allows expressing classes
whose structure evolve consistently with the structures they mirror. Morphing
strives for smooth integration in the programming language, all the way down to
modular type checking. Thus, reasoning about morphed classes is possible, unlike
reasoning about and type checking of generic aspects, which can typically only be
done after their application to a specific code base. Morphing does not introduce
functionality to unsuspecting code. Instead, it ensures that any extension is
under the full control of the programmer. The result of morphing is a new class
or interface, which the programmer is free to integrate in the application at
will. We thus view morphing as an exciting new direction in supporting software
evolution.

References

1. Java Collections Framework Web site,
http://java.sun.com/j2se/1.4.2/docs/guide/collections/. Accessed Apr. 2007.

2. J. Bachrach and K. Playford. The Java syntactic extender (JSE). In Proc. of the
16th ACM SIGPLAN conference on Object Oriented Programming, Systems, Lan-
guages, and Applications, pages 31–42, Tampa Bay, FL, USA, 2001. ACM Press.

3. J. Baker and W. C. Hsieh. Maya: multiple-dispatch syntax extension in Java. In
Proc. of the ACM SIGPLAN 2002 Conference on Programming Language Design
and Implementation, pages 270–281, Berlin, Germany, 2002. ACM Press.

79

4. D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: tools for implementing domain-
specific languages. In Proc. Fifth Intl. Conf. on Software Reuse, pages 143–153,
Victoria, BC, Canada, 1998. IEEE.

5. B. Burke et al. JBoss AOP Web site, http://labs.jboss.com/portal/jbossaop. Ac-
cessed Apr. 2007.

6. E. Gamma, R. Helm, and R. Johnson. Design Patterns. Elements of Reusable
Object-Oriented Software. Addison-Wesley Professional Computing Series.
Addison-Wesley, 1995.

7. S. S. Huang, D. Zook, and Y. Smaragdakis. Morphing: Safely shaping a class in
the image of others. In E. Ernst, editor, To Appear: Proc. of the European Conf.
on Object-Oriented Programming (ECOOP), LNCS. Springer-Verlag, July 2007.

8. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An overview of AspectJ. In Proc. of the 15th European Conf. on Object-Oriented
Programming, pages 327–353, London, UK, 2001. Springer-Verlag.

9. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In M. Akşit and S. Matsuoka, editors,
Proc. of the 11th European Conf. on Object-Oriented Programming, volume 1241,
pages 220–242. Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

10. J. Palsberg and C. B. Jay. The essence of the visitor pattern. In Proc. 22nd
IEEE Intl. Computer Software and Applications Conf., COMPSAC, pages 9–15,
19–21 1998.

11. T. Skotiniotis, J. Palm, and K. J. Lieberherr. Demeter interfaces: Adaptive pro-
gramming without surprises. In European Conference on Object-Oriented Program-
ming, pages 477–500, Nantes, France, 2006. Springer Verlag Lecture Notes.

12. E. Visser. Program transformation with Stratego/XT: Rules, strategies, tools, and
systems in Stratego/XT 0.9. In C. Lengauer, D. Batory, C. Consel, and M. Oder-
sky, editors, Domain-Specific Program Generation, pages 216–238. Springer-Verlag,
2004. LNCS 3016.

80

AOP vs Software Evolution:
a Score in Favor of the Blueprint.

Walter Cazzola1 and Sonia Pini2

1 Department of Informatics and Communication,
Università degli Studi di Milano, Italy

cazzola@dico.unimi.it
2 Department of Informatics and Computer Science

Università degli Studi di Genova, Italy
pini@disi.unige.it

Abstract. All software systems are subject to evolution, independently by the
developing technique. Aspect oriented software in addition to separate the differ-
ent concerns during the software development, must be “not fragile” against soft-
ware evolution. Otherwise, the benefit of disentangling the code will be burred
by the extra complication in maintaining the code.
To obtain this goal, the aspect-oriented languages/tools must evolve, they have to
be less coupled to the base program. In the last years, a few attempts have been
proposed, the Blueprint is our proposal based on behavioral patterns.
In this paper we test the robustness of the Blueprint aspect-oriented language
against software evolution. Keywords: AOP, Software Evolution, Fragile Point-
cut Problem.

1 Introduction

All software systems are subject to evolution, they evolve over time as new requirements
and functionality emerge, or adaption and extensions are to be made. Studies pointed out
that up to 80% [13] of the system lifetime will be spent on maintenance and evolution
activities. A program that is useful in a real-world environment necessarily must change
or become progressively less useful in that environment [12].

Aspect-oriented programming has been designed with the intention of providing a
better separation of concerns by modularizing concerns that would otherwise be tangled
and scattered across the other concerns. This would made the software more maintain-
able, evolvable and understandable. Paradoxically, the major aspect-oriented techniques
instead of improving software maintainability seem to restrict the evolvability of that
software, as highlighted in [21]. This problem is due to the so called “fragile pointcut
problem” [11].

Pointcuts are deemed fragile when seemingly innocent changes to the base program,
such as renaming or relocating a method, break a pointcut such that it no longer captures
the join points it is intended to capture. When code is added to a program and introduces
new join points in the program, pointcuts are similarly considered fragile in the case
some of these new join points should be captured by the pointcut but it fails to do so.

81

It implies that all pointcuts of each aspect need to be checked and possibly revised
whenever the base program evolves, since they often break when the base program is
re-factored. All pointcuts referring to the base program need to be examined both after
an evolution and after a re-factoring, because they capture a set of join points based
on some structural and syntactical properties, any change to the structure or syntax of
the base program can alter the set of join points that is captured by the pointcuts. This
problem exists both if a programmer uses wildcards and not.

In practice, the pointcut fragility derives form the dependency on the program syn-
tax and the coupling between aspects and program [1, 7, 8, 20]. The fragile pointcut
problem is a serious inhibitor to evolution of aspect-oriented programs. The critical el-
ement of the past generation of AO tool is the necessity to specify program elements
names and the impossibility to select elements without using naming convention or reg-
ular expressions. In short, they have a linguistic approach, so aspect writers need to be
completely aware of the base-code details and evolution, so each aspect become strictly
bound to the application on who has been designed. To obtain a less fragile approach,
it is necessary a new generation of aspect-oriented languages/tools, less coupled to the
base program.

In the last few years, the main goal of the new generation of AO approaches is
to get a more semantic join point selection mechanism to avoid the fragile pointcut
problem. Some approaches are: the pointcut delta analysis [11, 20], the approach of
Kellens et al. described in [8], the join point model proposed by Mohd Ali and Rashid
in [14], the functional query language proposed by Eichberg et al. in [4], the graphical
approach to model pointcuts described by Stein et al. in [19] and so on. In [3, 16] we
have defined a new (visual) model-based join point selection mechanism. We tackle the
fragile pointcut problem by eliminating the intimate dependency of pointcut definitions
on the base program and by using a high level description of the program behavior
during the join point selection.

In this paper we want to prove the robustness of the Blueprint against the evolu-
tion. The rest of the paper is organized as follows: in section 2 we shortly overview
the Blueprint approach and elements, in section 3 we introduce our test case for the
evolution, finally, in section 4 and in section 5 we face some related works and draw
out our conclusions.

2 The Blueprint Language

The Blueprint framework is based on our previous work [2] and it is completely de-
tailed in [16]. Moreover, a working prototype of the framework has been developed in
Java.

The main goal of the Blueprint language is to overcome many problems of the
past generation of AO language [1, 9, 11], such as, the granularity of the join point, the
fragile pointcut problem, the semantic selection and so on.

The Blueprint is based on the idea that the description of the application behavior
cannot be strictly coupled to the application syntactic details. It permits a loose approach
to the description of the application behavior. This means that the aspect programmer
can use different levels of detail during the description of a single join point blueprint

82

by using any possible combinations of loose and tight elements. This approach per-
mits to describe a well identified behavior tightly coupled to the application code by
specifying the names of the involved elements, and a less known behavior by using
meta-information to abstract from the real application code.

The Blueprint is a novel aspect-oriented framework, its join point selection mech-
anism allows the selection of the join points abstracting from implementation details,
name conventions and any other source code dependency. In particular the aspect pro-
grammer can select the interested join points by describing their supposed location in
the application through UML-like descriptions (basically, activity diagrams) represent-
ing computational patterns on the application behavior; these descriptions are called
blueprints. The blueprints are just patterns on the application behavior, i.e., they are not
derived from the system design information but express properties on them. In other
words, we adopt a sort of enriched UML diagrams to describe the application control
flows or computational properties and to locate the join points inside these contexts.

The Blueprint uses a static quantification, i.e., it allows quantification over the
abstract syntax tree of the program, hereby queries such as “print the value of a variable
used in a loop test condition and modified in the loop body” are possible. This kind of
quantification requires to access the source code of the application, because we need
to obtain a parsed version of the underlying program, to run the transformation rules
realizing the quantified aspects over that abstract syntax tree. The Blueprint language
can be used on the bytecode as well since it can be univocally decompiled (modulo
semantic equivalence) by apposite tools, e.g., by Jode.

In our approach, we do not need to use position qualifiers such as before and after
advices to indicate where to insert the concern inside the base code, since we describe
the context we are looking for, we can either locate the join points exactly where we
want to insert the new code or, to highlight the portion of behavior we want to replace.

The Blueprint framework recalls the AspectJ terminology but some terms are
used with a slightly different meaning. The Blueprint join points are hooks where code
may be added rather than well defined points in the execution of a program as in As-
pectJ. In other words, the AspectJ join points are based on the idea that “when
something happens, then something gets executed3”. In this view a join point consists
of things like method and constructor calls, method and constructor executions, object
instantiations, field references and so on. While the Blueprint approach is that “join
points can occur in any part of the code”, this view permits of changing a single line
of code. We use a statement-level granularity for the join point model whereas As-
pectJ uses an operational level granularity for the join point model. In particular we
consider two different kinds of join points: the local join points that represent points in
the application behavior where to insert the code of the concern, and region join points
that represent portion of the application behavior that must be replaced by the code of
the concern. The pointcuts are obtained as composition/enumeration of the join points
selected by the join point blueprints rather than as the logical composition of queries on
the application code. While introductions and advices keep their usual meaning.

To complete the picture of the situation, we have introduced some new concepts:
join point blueprint and, blueprint space. The former is a template (a blueprint) on

3 http://www.eclipse.org/aspectj/doc/released/progguide/index.html

83

<<exactmatch>>
*.foo(..)

method meta-variable
 any foo(..)

<<or>>
variable meta-variable
 Field

use (*.Field in left)

<<method>>

<<joinpoint produce>>
<<joinpoint consume>>

use ((*.Field in right) or
 (*.Field in return))

<<method>>

 produce, consume

ObserverBlueprint

context
 Buffer

Fig. 1. Sample Join Point Blueprint.

the application behavior identifying the join points in their context; these blueprints
describe where the local and region join points should be located in the application
behavior. The blueprint does not completely describe the computational flow but only
the portions relevant for selecting the join points. The latter is the set of all join points
blueprints defined on the same application.

The key element of our approach are the join point blueprints, they graphically
depicts where a join point (both local and region) should be in the application behavior.
They look like an activity diagrams.

The diagram contextualizes the join point location by describing some crucial events
that should occur close to the join point, these events will be used to recognize the join
point. The frame gives some ancillary information, such as the blueprint name (at the
top left corner), the join points name exposed by the blueprint (at the bottom right cor-
ner) and some meta-info used by the weaver to parametrize the context and to get values
from the join point. The listed join points are the only exposed to the pointcut specifi-
cation. The join point position is denoted by the �joinpoint name� stereotypea (ora
bya thea couplea �startjoinpoint name� and �endjoinpoint name� for the re-
gion join points).

To get a more expressive language and less coupled to the code syntax and struc-
ture, and by assuming that the aspect programmer does not necessarily know the im-
plementation details of the code, we introduced the meta-information section inside the
blueprint diagram. The meta-information is the textual portion of the blueprint, that al-
lows the programmer of describing the context at the desired implementation detail, i.e.,
either by using real variable, method and field names or less precise information. For
example, if the programmer does know the method name, but he knows its parameter
types, he can use this information, in the meta-information section, by declaring a new

84

method meta-variable with a fantasy name,and indicating the right number and type of
its parameters, and finally by using this new meta-variable in the blueprint to describe
the sought behavior. The meta-information elements will be unified to variable names
used into the application during the weaving phase.

Figure 1 shows a very simple join point blueprint that absolutely do not recall the
whole expressivity allowed by the formalism. For a detailed and exhaustive description,
please, refer to [16] chapter 4.

3 A Test-Bed for the Blueprint Robustness

So far, we have used the Blueprint to locate simple join points in toy-applications, like
showed in [3,16], with few lines of code. Now, it is fundamental to test the robustness of
the Blueprint language against the evolution by using a real application with thousand
lines of code and a long time life cycle with many adaptation steps. To this goal, we
adopted the Health Watcher (HW) system4 developed at UPE and introduced by Soares
et al. in [18].

HW is a typical web-based application that manages health-related information. It
includes a variety of crosscutting concerns, such as concurrency, distribution, persis-
tence, and so on. The same application has been previously used as test-bed by the Lan-
caster University (in [6]), that has created and compared one object-oriented (by using
Java) and two aspect-oriented (by using AspectJ and CaesarJ) implementations of
HW. Moreover, they introduced nine steps of evolution to the initial application.

3.1 HW Evolution

We consider the HW evolution from version 8 to version 9, which adds new function-
alities to the application. Version 9 adds the following functionalities: insertion of new
health unit, insertion of new medical speciality, insertion of new symptoms, searching
for symptoms, updating of a symptom, searching for speciality by code, updating of
medical speciality, and insertion of new disease types.

These new functionalities involve the creation of new records and repositories for
diseases and symptoms. Potentially, they can introduce changes to the public interface
and interfere with the correct working of the existing pointcuts.

Most of the AOP approaches use a join point model similar to that of AspectJ [10].
The AspectJ pointcut language offers a set of primitive pointcut designators, such as
call, get and set specifying a method call and the access to an attribute. All the
pointcut designators expect, as an argument, a string specifying a pattern for match-
ing method or field signature. These string patterns introduce a real dependency of the
syntax of the base code. Intuitively, since pointcuts capture a set of join points based
on some structural or syntactical property, any change to the structure or syntax of the
base program could also change the applicability of the pointcuts and the set of captured
join points.

4 The complete source code developed is available at http://www.comp.lancs.ac.uk/ greenwop/-
tao

85

Aspect developer implicitly imposes some design rules that the base program devel-
oper has to follow when evolves his program to be compliant with the existing aspects
and avoid of selecting more or less join points than expected. In this case, problems
with evolution depend also of the need of guessing these, often silent, conventions.
These rules derive from the fact that pointcuts often express semantic properties about
the base program in terms of its structural properties.

First to present our approach, we present the problems encountered, also in this
case, by the AspectJ aspects. In particular, we consider the aspect used for the HW
synchronization of concurrent insertion and showed in Listing 1.1.

It is fairly evident that the pointcut definition takes in consideration only the method
name of a particular class and not the behavior or the semantic to locate the interested
join points. In this case, the aspect programmer has written a correct pointcut, and the
corresponding aspect works as intended. When the code is changed (i.e., in version 9)
by adding new persistent entity, i.e., DiseaseRecord and SymptomRecord despite the
behavior added by these new entities is the same of the old entity, the synchroniza-
tionPoints pointcut (see Listing 1.2) has been changed in order to consider also the
new methods.

Listing 1.1. The AspectJ pointcut in version 8

public pointcut synchronizationPoints(Employee employee) :

execution(* EmployeeRecord.insert(Employee))

&& args(employee);

Note that this is only a possible way to write the pointcut, but in general the prob-
lems are the same. For example, in Listing 1.1, we can insert a wildcard in place of the
class name (EmployeeRecord), in this case the pointcut is not broken by the evolution,
but if the programmer decides to change the method name, e.g., from insert to store
the pointcut does not work right, and (s)he must adapt the pointcut definition to locate
all the right point in the application.

Listing 1.2. The AspectJ pointcut in version 9

public pointcut synchronizationPoints(Object o) :

(execution(* EmployeeRecord.insert(Employee)) ||

execution(* DiseaseRecord.insert(DiseaseType)) ||

execution(* SymptomRecord.insert(Symptom)))&& args(o);

Since, the problem of the evolution in aspect-oriented programs is mainly that the
set of join points captured by a pointcut may change when changes are made to the base
program, even though the pointcut definition itself remains unaltered. Then, to avoid
this problem we need a low coupling of the pointcut definition with the source code.
The aim of the Blueprint approach is just to overcome the AOP problem about software
evolution, by allowing the selection of the join points abstracting from implementation
details, name conventions and any other source code dependency.

In Figure 2 is showed the join point blueprint used to locate the methods that need
synchronization, it describes a relevant portion of a method behavior. In particular, since
all application methods that store records into repositories are composed by a check to

86

<<joinpoint b>>

 a, b

SynchronizationBlueprint

<<joinpoint a>>

false true

variable meta-variable
 repository, x

method meta-variable
 void insert(ANY)

<<exactmatch>>
this.repository.insert(x);

Fig. 2. Join Point Blueprint for Insertion Synchronization.

control if the record is already inserted or not inside the repository, we can search an if
statement containing, in the false branch, the code to insert the record.

The �joinpoint b� locate the join point at the beginning of the method that con-
tains the statement that match the relevant portion of behavior, while the �joinpoint
a� locate the join point at the end of the method that contains the matched statements
of the diagram. The diamond indicate that we are looking for a conditional statement,
where the condition is not relevant for the context definition, like so, it is not relevant
what is contained in the true branch.

The repository variable meta-variable used in the action (i.e., the red rounded
rectangle) during the weaving process is unified to a class field. The insert method
meta-variable represents a method that does not return nothing and that has only one
parameter of any type Note that the name of the method meta-variable is completely
independent from the name of the searched method, i.e., changing the name insert in
abcdef the located behavior and unified variables do not change.

Since the new entities have almost the same behavior of the old one, like showed in
Listing 1.3, the behavior described in the blueprint locate all the methods that need a
synchronization point.

Our selection mechanism matches the insert() method of the EmployeeRecord
class presents in version 8, and the insert() methods present in the DiseaseRe-
cord and, SymptomRecord classes, added in version 9, without change anything. The
repository variable meta-variable is respectively unified to employeeRepository,
diseaseRep and rep application’s field. The void insert(ANY)method meta-variable

87

Listing 1.3. The Application Implementation

// insert method of EmployeeRecord class
public void insert(Employee employee) // throws clause {

if (employeeRepository.exists(employee.getLogin())) {

throw // new exception ;

} else {

employeeRepository.insert(employee);

}

// insert method of DiseaseRecord class
public void insert(DiseaseType td) // throws clause {

if (diseaseRep.exists(td.getCode())) {

throw // new exception ;

} else {

this.diseaseRep.insert(td);

}

// insert method of SymptomRecord class
public void insert(Symptom symptom) // throws clause {

if (rep.exists(symptom.getCode())) {

throw // new exception);

} else {

rep.insert(symptom);

}

}

is respectively unified to the insert method of the EmployeeRepositoryArray,
DiseaseTypeRepositoryArray, and SymptomRepositoryArray class.

4 Related Works

The Blueprint framework is not the first attempt of dealing with the limitations of the
current join point selection mechanisms. In the next of the section we report some of
the most significant attempts, without pretending to be exhaustive.

In [8], Kellens et al. tackle the fragile pointcut problem by replacing the intimate
dependency of pointcut definitions on the base program by a more stable dependency
on a conceptual model of the program. This conceptual model provides an abstraction
over the structure of the source code and classifies base program entities according to
the concepts that they implement. The strength of the approach is on the definition of
the conceptual model of the base program. The classification of source-code entities in
the conceptual model is constructed using annotations in the source code and, defining
extra design constraints that need to be respected by source-code entities, for the model
to be consistent. This approach requires developers to describe a conceptual model of
their program and its mapping to the program code, in this way, it breaks the oblivi-
ousness [5] property. Moreover, it is coupled with the structure of the base program,

88

but not coupled with its implementation, and only the program entities can be used to
define pointcut, since they use the same join point of the AspectJ join point model.
Finally, they still need a mechanism for automatically verifying the correctness of the
classifications defined by the conceptual model.

In [4], Eichberg, et al. present the usage of functional query language for the specifi-
cation of pointcuts. In their approach a pointcut is a set of nodes in a tree representation
of the program’s modular structure, and this set is selected by query on node attribute
written in a query language. They created an XML-to-class file assembler/disassembler
that can be used to create an XML representation of a class file and convert an XML file
back into a class file on the basis of their bytecode framework. The query language is
used on top of this XML representation of the program structure. Their join point model
defines more join point of the AspectJ one, because bytecode structure permits to
identify more point, e.g., the storing of a value in a local variable. Their query language
is general enough to express a wide range of very different pointcut models.

In [17], Sakurai and Masuhara propose a new aspect-oriented programming lan-
guage that uses unit test cases as interface of crosscutting concerns. A test-based point-
cut matches join points in the execution of a target program that (potentially) have
the same execution history as one of the unit test cases specified by the pointcut. This
approach replace the fragile pointcut problem with the maintenance of unit test cases
whose cost should anyhow be paid with practical software development.

In [15], Nagy et al. propose a new approach to AOP by referring to program unit
through their design intentions to answer to the need of expressing semantic pointcuts.
Design intention is represented by annotated design information, which describes for
example the behavior of a program element or its intended meaning. Their approach in-
stead of referring directly to the program, provide a new language abstraction to specify
pointcuts based on some design information. Design information are inserted inside the
base program using annotations and they are associated manually, derived on the pres-
ence of other design information and, through superimposition. The key benefit of this
approach is that it reduces direct dependencies between the crosscutting concerns and
the program source. Unfortunately, this approach breaks the obliviousness [5] property.
This property is broken because certain design information has to be specified by the
software engineer, and moreover the software engineer must use a consistent and co-
herent set of design information for each sub-domain of an application.

5 Conclusions

Current aspect-oriented approaches suffer from well known fragile pointcut problem.
A common attempt to give a solution consists of creating a more semantic mechanism
for the join points selection. This paper shortly describe the Blueprint framework, a
novel approach to join points identification that permits to decouple aspects definition
and base-code syntax and structure. Moreover, this paper presents a test-bed in order to
evidence the robustness of the Blueprint pointcut against the software evolution.

89

6 Acknowledgements

The authors wish to thank the original developers of the HW application and Alessandro
Garcia for sharing the HW code.

References

1. Walter Cazzola, Jean-Marc Jézéquel, and Awais Rashid. Semantic Join Point Models: Mo-
tivations, Notions and Requirements. In Proceedings of the Software Engineering Proper-
ties of Languages and Aspect Technologies Workshop (SPLAT’06), Bonn, Germany, on 21st
March 2006.

2. Walter Cazzola and Sonia Pini. Join Point Patterns: a High-Level Join Point Selection Mech-
anism. In Thomas Khüne, editor, MoDELS’06 Satellite Events Proceedings, Lecture Notes
in Computer Science 4364, pages 17–26, Genova, Italy, on 1st of October 2006. Springer.
Best Paper Awards at the 9th Aspect-Oriented Modeling Workshop.

3. Walter Cazzola, Sonia Pini, and Massimo Ancona. Design-Based Pointcuts Robustness
Against Software Evolution. In Walter Cazzola, Shigeru Chiba, Yvonne Coady, and Gunter
Saake, editors, Proceedings of the 3rd ECOOP Workshop on Reflection, AOP and Meta-Data
for Software Evolution (RAM-SE’06), in 20th European Conference on Object-Oriented Pro-
gramming (ECOOP’06), pages 35–45, Nantes, France, on 2nd of July 2006.

4. Michael Eichberg, Mira Mezini, and Klaus Ostermann. Pointcuts as Functional Queries. In
Proceedings of the 2nd ASIAN Symposium on Programming Languages and Systems (APLAS
2004), LNCS, Taipei, Taiwan, November 2004. Springer.

5. Robert E. Filman and Daniel P. Friedman. Aspect-Oriented Programming is Quantification
and Obliviousness. In Proceedings of OOPSLA 2000 Workshop on Advanced Separation of
Concerns, Minneapolis, USA, October 2000.

6. Phil Greenwood, Alessandro F. Garcia, Thiago Bartolomei, Sergio Soares, Paulo Borba, and
Awais Rashid. On the Design of an End-to-End AOSD Testbed for Software Stability. In
Proceedings of the 1st International Workshop on Assessment of Aspect-Oriented Technolo-
gies (ASAT.07), Vancouver, Canada, March 2007.

7. Kris Gybels and Johan Brichau. Arranging Language Features for More Robust Pattern-
Based Crosscuts. In Proceedings of the 2nd Int’l Conf. on Aspect-Oriented Software Devel-
opment (AOSD’03), pages 60–69, Boston, Massachusetts, April 2003.

8. Andy Kellens, Kris Gybels, Johan Brichau, and Kim Mens. A Model-driven Pointcut Lan-
guage for More Robust Pointcuts. In Proceedings of Software engineering Properties of
Languages for Aspect Technologies (SPLAT’06), Bonn, Germany, March 2006.

9. Gregor Kiczales. The Fun Has Just Begun. Keynote AOSD 2003, Boston, March 2003.
10. Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeff Palm, and Bill Griswold. An

Overview of AspectJ. In Proceedings of the 15th European Conference on Object-Oriented
Programming (ECOOP’01), pages 327–353, Budapest, Hungary, June 2001. ACM Press.

11. Christian Koppen and Maximilian Störzer. PCDiff: Attacking the Fragile Pointcut Problem.
In Proceedings of the European Interactive Workshop on Aspects in Software (EIWAS’04),
Berlin, Germany, September 2004.

12. Meir M. Lehman. Programs, Life Cycles, and Laws of Software Evolution. Proceedings of
the IEEE, 68(9):1060–1076, September 1980. Special Issue on Software Engineering.

13. Meir M. Lehman, Juan Fernandez-Ramil, and Goel Kahen. A Paradigm for the Behavioural
Modelling of Software Processes using System Dynamics. Technical Report 2001/8, Impe-
rial College, Department of Computing, London, United Kingdom, September 2001.

90

14. Noorazean Mohd Ali and Awais Rashid. A State-based Join Point Model for AOP. In
Proceedings of the 1st ECOOP Workshop on Views, Aspects and Role (VAR’05), in 19th
European Conference on Object-Oriented Programming (ECOOP’05), Glasgow, Scotland,
July 2005.

15. István Nagy, Lodewijk Bergmans, Wilke Havinga, and Mehmet Akşit. Utilizing Design
Information in Aspect-Oriented Programming. In Robert Hirschfeld, Ryszard Kowalczyk,
Andreas Polze, and Mathias Weske, editors, Proceedings of 4th Annual International Confer-
ence on Object-Oriented and Internet-based Technologies, Concepts, and Applications for
a Networked World (Net.ObjectDays), LNI 61, pages 39–60, Erfurt, Germany, September
2005.

16. Sonia Pini. Blueprint: A High-Level Pattern Based AOP Language. PhD Thesis, Department
of Informatics and Computer Science, Università di Genova, Genoa, Italy, June 2007.

17. Kouhei Sakurai and Hidehiko Masuhara. Test-based Pointcuts: A Robust Pointcut Mech-
anism Based on Unit Test Cases for Software Evolution. In Proceedings of Linking As-
pect Technology and Evolution revisited (LATE’07), Vancouver, British Columbia, Canada,
March 2007.

18. Sergio Soares, Eduardo Laureano, and Paulo Borba. Implementing Distribution and Persis-
tence Aspects with AspectJ. In Mamdouh Ibrahim and Satoshi Matsuoka, editors, Proceed-
ings of the 17th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’02), pages 174–190, Seattle, Washington, USA,
November 2002. ACM Press.

19. Dominik Stein, Stefan Hanenberg, and Rainer Unland. Modeling Pointcuts. In Proceed-
ings of the AOSD Workshop on Aspect-Oriented Requirements Engineering and Architecture
Design, Lancaster, UK, March 2004.

20. Maximilian Störzer and Jürgen Graf. Using Pointcut Delta Analysis to Support Evolution
of Aspect-Oriented Software. In Proceedings of the 21st IEEE International Conference
on Software Maintenance (ICSM’05), pages 653–656, Budapest, Hungary, September 2005.
IEEE Computer Society.

21. Tom Tourwé, Kris Gybels, and Johan Brichau. On the Existence of the AOSD-Evolution
Paradox. In Proceedings of the Workshop on Software-engineering Properties of Languages
for Aspect Technologies (SPLAT’03), Boston, Massachusetts, April 2003.

91

	17-26 Irmert, Meyerhöfer and Weiten.pdf
	Towards Runtime Adaptation in a SOA Environment
	Florian Irmert, Marcus Meyerhöfer, Markus Weiten

	79-87 Cazzola and Pini.pdf
	1 Introduction
	2 The Blueprint Language
	3 A Test-Bed for the Blueprint Robustness
	3.1 HW Evolution

	4 Related Works
	5 Conclusions
	6 Acknowledgements

